Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 5, pp 629–635 | Cite as

GABAergic Mechanism of Anticonvulsive Effect of Chemical Agent RU-1205

  • K. Yu. Kalitin
  • O. Yu. Grechko
  • A. A. Spasov
  • A. G. Sukhov
  • V. A. Anisimova
  • A. E. Matukhno

The study examined the effect of 9-(2-morpholinoethyl)-2-(4-fluorophenyl)imidazo[1,2-α] benzimidazole dihydrochloride (RU-1205) on the latency of seizures provoked by corazol, bicuculline, or picrotoxin. This agent (10 and 20 mg/kg) increased the seizure latency in the experimental models of epileptogenesis. The blockers of GABAA and GABA A -ρ receptors picrotoxin and (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid, respectively, were employed to study the effects of RU-1205 on electrical activity of somatosensory cortical neurons and on formation of pathological rhythms in the rat brain. RU-1205 inhibited the focal background rhythm and eliminated the epileptiform activity, which can be mediated by interaction with GABAA receptors.

Key Words

benzimidazoles epilepsy anticonvulsant drugs anticonvulsants GABA receptors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gamma TV, Korenyuk II, Khusainov DR, Kolotilova OI, Katyushina OV, Chertaev IV. Analgesic Properties of Benzimidazole. Uch. Zapiski Krym. Federal. Univer. Im. V. I. Vernandskogo. Biologiya, Khimiya. 2010;23(2):66-71. Russian.Google Scholar
  2. 2.
    Kalitin KY, Grechko OU, Spasov AA, Anisimova VA. Anticonvulsant Effect of Novel Benzimidazole Derivative (Ru-1205) in Chronic Intermittent Ethanol Vapor Exposure Model in Mice. Eksp. Klin. Farmakol. 2015;78(4):3-5. Russian.Google Scholar
  3. 3.
    Sukhov AG, Lysenko LV, Logvinov AK. Potential-dependent mechanisms of epileptiform activity. Valeologiya. 2009;(4):54-60. Russian.Google Scholar
  4. 4.
    Sharonova NI, Vorob’ev VS, Skrebitskii VG, Galenko-Yaroshevskii AP, Turovaya AY, Anisimova VA. Potentiation of GABA-activated currents by imidazobenzoimidazole derivative RU-353 in isolated cerebellum Purkinje cells. Bull. Exp. Biol. Med. 2005;140(3):326-329.CrossRefPubMedGoogle Scholar
  5. 5.
    Atack JR. Anxioselective compounds acting at the GABA(A) receptor benzodiazepine binding site. Curr. Drug Targets CNS Neurol. Disord. 2003;2(4):213-232.CrossRefPubMedGoogle Scholar
  6. 6.
    Gilliam FG, Snavely LS, Perucca P. Adverse effects in epilepsy: recognition, measurement, and taxonomy. Epilepsy and the Interictal State: Co-morbidities and Quality of Life. Louis EK St, Ficker DM, O’Brien TJ, eds. Wiley Online Library, 2015. P. 103-109. doi:
  7. 7.
    Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH. Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. J. Pharmacol. Exper. Ther. 2001;298(3):986-995.Google Scholar
  8. 8.
    Jain P, Sharma PK, Rajak H, Pawar RS, Patil UK, Singour PK. Design, synthesis and biological evaluation of some novel benzimidazole derivatives for their potential anticonvulsant activity. Arch. Pharm. Res. 2010;33(7):971-980.CrossRefPubMedGoogle Scholar
  9. 9.
    Jiang E, Yan X, Weng HR. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn. J. Neurochem. 2012;121(4):526-536.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Johnston GA. Advantages of an antagonist: bicuculline and other GABA antagonists. Br. J. Pharmacol. 2013;169(2):328-336.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Larsen JS, Ahring PK, Østergaard Nielsen E, Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. Patent US WO2010055130 A1, 20.05.2010.Google Scholar
  12. 12.
    Narasimhan B, Sharma D, Kumar P. Benzimidazole: a medicinally important heterocyclic moiety. Med. Chem. Res. 2012;21:269-283.CrossRefGoogle Scholar
  13. 13.
    Olsen R.W, Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 2008; 60 (3.P. 243-260.Google Scholar
  14. 14.
    Shaharyar M, Mazumder A, Salahuddin, Garg R, Pandey RD. Synthesis, characterization and pharmacological screening of novel benzimidazole derivatives. Arabian J. Chem. 2016;9(Suppl. 1):S342-S347.CrossRefGoogle Scholar
  15. 15.
    Vallish BN, Sinha SR, Joshi AD, Turankar AV, Patel SB, Mahato RK. Anticonvulsant activity of quinine in rat models of seizure in comparison with valproate and phenytoin. J. Young Pharmacists. 2014;6(3):32-36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Yu. Kalitin
    • 1
  • O. Yu. Grechko
    • 1
  • A. A. Spasov
    • 1
    • 2
  • A. G. Sukhov
    • 3
  • V. A. Anisimova
    • 4
  • A. E. Matukhno
    • 3
  1. 1.Department of PharmacologyVolgograd State Medical UniversityVolgogradRussia
  2. 2.Volgograd Medical Science CenterVolgogradRussia
  3. 3.Laboratory of Experimental NeurobiologyD. I. Ivanovsky Academy of Biology and BiotechnologyRostov-on-DonRussia
  4. 4.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations