Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 5, pp 620–623 | Cite as

Effects of Fluoxetine and Potential Antidepressant 8-Trifluoromethyl 1,2,3,4,5-Benzopentathiepin-6-Amine Hydrochloride (TC-2153) on Behavior of Danio rerio Fish in the Novel Tank Test and Brain Content of Biogenic Amines and Their Metabolites

  • N. A. Sinyakova
  • E. A. Kulikova
  • N. A. Englevskii
  • A. V. Kulikov
Article
  • 44 Downloads

We compared the effect of a new potential antidepressant 8-trifluoromethyl 1,2,3,4,5-benzopentathiepine-6-amine hydrochloride (TC-2153) and classical antidepressant fluoxetine in a dose of 0.25 mg/liter on the behavior of Danio rerio in the “novel tank” test and content of biogenic amines and their metabolites in the brain. Fluoxetine alone and TC-2153 alone significantly increased the time spent in the upper part of the tank and insignificantly reduced motor activity. Combined exposure of fishes in the solution containing potential and classical antidepressants potentiated their effects on both parameters. The compounds did not affect brain contents of serotonin, dopamine, and norepinephrine. At the same time, fluoxetine, but not TC-2153, reduced brain content of the main serotonin metabolite 5-hydroxyindole acetic acid.

Key Words

Danio rerio “novel tank” test fluoxetine TC-2153 monoamines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kulikova EA, Tikhonova MA, Volcho KP, Khomenko TM, Salakhutdinov NF, Kulikov AV, Popova NK. Comparison of behavioral effects of fluoxetine, imipramine, and new psychotropic drug TC-2153 in mice with different genetic predisposition to catalepsy. Zh. Vyssh. Nervn. Deyat. 2015;65(1):105-112. Russian.Google Scholar
  2. 2.
    Artigas F. Developments in the field of antidepressants, where do we go now? Eur. Neuropsychopharmacol. 2015;25(5):657-670.CrossRefPubMedGoogle Scholar
  3. 3.
    Blier P, El Mansari M. Serotonin and beyond: therapeutics for major depression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20120536. doi:  https://doi.org/10.1098/rstb.2012.0536.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cipriani A, Zhou X, Del Giovane C, Hetrick SE, Qin B, Whittington C, Coghill D, Zhang Y, Hazell P, Leucht S, Cuijpers P, Pu J, Cohen D, Ravindran AV, Liu Y, Michael KD, Yang L, Liu L, Xie P. Comparative efficacy and tolerability of antidepressants for major depressive disorder in children and adolescents: a network meta-analysis. Lancet. 2016;388:881-890.CrossRefPubMedGoogle Scholar
  5. 5.
    Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 2012;35(1):47-56.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 2014;35(2):63-75.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kulikov AV, Tikhonova MA, Kulikov VA. Automated measurement of spatial preference in the open field test with transmitted lighting. J. Neurosci. Methods. 2008;170(2):345-351.CrossRefPubMedGoogle Scholar
  8. 8.
    Kulikova EA, Bazhenova EY, Popova NK, Kulikov AV, Khomenko TM, Volcho KP, Salakhutdinov NF. Effect of acute administration of 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153) on biogenic amines metabolism in mouse brain. Lett. Drug. Des. Discov. 2015;12(10):833-836.CrossRefGoogle Scholar
  9. 9.
    Maximino C, Puty B, Benzecry R, Araújo J, Lima MG, de Jesus Oliveira Batista E, Renata de Matos Oliveira K, Crespo-Lopez ME, Herculano AM. Role of serotonin in zebrafish (Danio rerio) anxiety: relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology. 2013;71:83-97.CrossRefPubMedGoogle Scholar
  10. 10.
    Paul S, Nairn AC, Wang P, Lombroso PJ. NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat. Neurosci. 2003;6(1):34-42.CrossRefPubMedGoogle Scholar
  11. 11.
    Paul S, Snyder GL, Yokakura H, Picciotto MR, Nairn AC, Lombroso PJ. The Dopamine/D1 receptor mediates the phosphorylation and inactivation of the protein tyrosine phosphatase STEP via a PKA-dependent pathway. J. Neurosci. 2000;20(15):5630-5638.PubMedGoogle Scholar
  12. 12.
    Singer ML, Oreschak K, Rhinehart Z, Robison BD. Anxiolytic effects of fluoxetine and nicotine exposure on exploratory behavior in zebrafish. PeerJ. 2016;4:e2352. doi:  https://doi.org/10.7717/peerj.2352.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV. Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology. 2012;62(1):135-143.CrossRefPubMedGoogle Scholar
  14. 14.
    Xu J, Chatterjee M, Baguley TD, Brouillette J, Kurup P, Ghosh D, Kanyo J, Zhang Y, Seyb K, Ononenyi C, Foscue E, Anderson GM, Gresack J, Cuny GD, Glicksman MA, Greengard P, Lam TT, Tautz L, Nairn AC, Ellman JA, Lombroso PJ. Inhibitor of the tyrosine phosphatase STEP reverses cognitive deficits in a mouse model of Alzheimer’s disease. PLoS Biol. 2014;12(8):e1001923. doi:  https://doi.org/10.1371/journal.pbio.1001923.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Sinyakova
    • 1
  • E. A. Kulikova
    • 1
  • N. A. Englevskii
    • 1
  • A. V. Kulikov
    • 1
  1. 1.Federal Research Center Institute of Cytology and GeneticsSiberian Division of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations