Skip to main content

Advertisement

Log in

Monocytes with Oncogenic Mutation JAK2 V617F as a Tool for Studies of the Pathogenic Mechanisms of Myelofibrosis

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We analyzed previously generated stable monocyte-derived cell line carrying mutation JAK2 V617F. Evaluation of the expression of pro- and antifibrotic factors revealed changes in the production of MMPs and their inhibitors, growth factors, galectin-3, and pentraxin 3 in cells carrying mutation JAK2 in comparison with control non-modified cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silyutina AA, Gin II, Matyukhina NM, Balayan EN, Butylin PA. Myelofibrosis Models: Literature Review and Own Data. Klin. Oncogematol. 2017;10(1):75-84. Russian.

    Google Scholar 

  2. Abdul Hameed MD, Tawa GJ, Kumar K, Ippolito DL, Lewis JA, Stallings JD, Wallqvist A. Systems level analysis and identification of pathways and networks associated with liver fibrosis. PLoS One. 2014;9(11):e112193. doi: https://doi.org/10.1371/journal.pone.0112193.

    Article  Google Scholar 

  3. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 2009;27:669-692.

    Article  CAS  PubMed  Google Scholar 

  4. Cabrera S, Gaxiola M, Arreola JL, Ramírez R, Jara P, D’Armiento J, Richards T, Selman M, Pardo A. Overexpression of MMP9 inmacrophages attenuates pulmonary fibrosis induced by bleomycin. Int. J. Biochem. Cell Biol. 2007;39(12):2324-2338.

    Article  CAS  PubMed  Google Scholar 

  5. Endo H, Niioka M, Sugioka Y, Itoh J, Kameyama K, Okazaki I, Ala-Aho R, Kähäri VM, Watanabe T. Matrix metalloproteinase-13 promotesrecovery from experimental liver cirrhosis in rats. Pathobiology. 2011;78(5):239-252.

    Article  CAS  PubMed  Google Scholar 

  6. Introna M, Alles VV, Castellano M, Picardi G, De Gioia L, Bottazzai B, Peri G, Breviario F, Salmona M, De Gregorio L, Dragani TA, Srinivasan N, Blundell TL, Hamilton TA, Mantovani A. Cloning of mouse ptx3, a new member of the pentraxin gene family expressed at extrahepatic sites. Blood. 1996;87(5):1862-1872.

    CAS  PubMed  Google Scholar 

  7. Jensen MK, Holten-Andersen MN, Riisbro R, de Nully Brown P, Larsen MB, Kjeldsen L, Heickendorff L, Brünner N, Hasselbalch HC. Elevated plasma levels of TIMP-1 correlate with plasma suPAR/uPA in patients with chronic myeloproliferative disorders. Eur. J. Haematol. 2003;71(5):377-384.

    Article  CAS  PubMed  Google Scholar 

  8. Kantarjian HM, Silver RT, Komrokji RS, Mesa RA, Tacke R, Harrison CN. Ruxolitinib for myelofibrosise — an update of its clinical effects. Clin. Lymphoma Myeloma Leuk. 2013;13(6):638-645.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, Them NC, Berg T, Gisslinger B, Pietra D, Chen D, Vladimer GI, Bagienski K, Milanesi C, Casetti IC, Sant’Antonio E, Ferretti V, Elena C, Schischlik F, Cleary C, Six M, Schalling M, Schönegger A, Bock C, Malcovati L, Pascutto C, Superti-Furga G, Cazzola M, Kralovics R. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med. 2013;369(25):2379-2390.

    Article  CAS  PubMed  Google Scholar 

  10. Koopmans SM, Bot FJ, Schouten HC, Janssen J, van Marion AM. The involvement of Galectins in the modulation of the JAK/STAT pathway in myeloproliferative neoplasia. Am. J. Blood Res. 2012;2(2):119-127.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Le Bousse-Kerdilès MC. Primary myelofibrosis and the “bad seeds in bad soil” concept. Fibrogenesis Tissue Repair. 2012;5(Suppl. 1):S20.

    PubMed  PubMed Central  Google Scholar 

  12. Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, Senior RM, Elias JA. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J. Exp. Med. 2001;194(6):809-821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murate T, Yamashita K, Isogai C, Suzuki H, Ichihara M, Hatano S, Nakahara Y, Kinoshita T, Nagasaka T, Yoshida S, Komatsu N, Miura Y, Hotta T, Fujimoto N, Saito H, Hayakawa T. The production of tissue inhibitors of metalloproteinases (TIMPs) in megakaryopoiesis: possible role of platelet- and megakaryocyte-derived TIMPs in bone marrow fibrosis. Br. J. Haematol. 1997;99(1):181-189.

    Article  CAS  PubMed  Google Scholar 

  14. Oliver GW, Stettler-Stevenson WG, Kleiner DE. Zymography, casein zymography and reverse zymography: activity assays for proteases and their inhibitors. Handbook of Proteolytic Enzymes. San Diego, 1999. P. 61-76.

  15. Pilling D, Cox N, Vakil V, Verbeek JS, Gomer RH. The long pentraxin PTX3 promotes fibrocyte differentiation. PLoS One. 2015;10(3):e0119709. doi: https://doi.org/10.1371/journal.pone.0119709.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schneider RK, Ziegler S, Leisten I, Ferreira MS, Schumacher A, Rath B, Fahrenkamp D, Müller-Newen G, Crysandt M, Wilop S, Jost E, Koschmieder S, Knüchel R, Brümmendorf TH, Ziegler P. Activated fibronectin-secretory phenotype of mesenchymal stromal cells in pre-fibrotic myeloproliferative neoplasms. J. Hematol. Oncol. 2014;7:92. doi: https://doi.org/10.1186/s13045-014-0092-2.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schneider RK, Mullally A, Dugourd A, Peisker F, Hoogenboezem R, Van Strien PMH, Bindels EM, Heckl D, Büsche G, Fleck D, Müller-Newen G, Wongboonsin J, Ventura Ferreira M, Puelles VG, Saez-Rodriguez J, Ebert BL, Humphreys BD, Kramann R. Gli1+ mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell. 2017;20(6):785-800.e8.

  18. Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J. Clin. Oncol. 2011;29(5):573-582.

    Article  CAS  PubMed  Google Scholar 

  19. Uchinami H, Seki E, Brenner DA, D’Armiento J. Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology. 2006;44(2):420-429.

    Article  CAS  PubMed  Google Scholar 

  20. Vadikolia CM, Tsatalas C, Anagnostopoulos K, Trypsianis G, Pantelidou D, Bazdiara I, Anastasiadis A, Spanoudakis E, Kotsianidis I, Margaritis D, Kortsaris A, Bourikas G. Proteolytic matrix metallopeptidases and inhibitors in BCR-ABL1-negative myeloproliferative neoplasms: correlation with JAK2 V617F mutation status. Acta Haematol. 2011;126(1):54-62.

    Article  CAS  PubMed  Google Scholar 

  21. Verstovsek S, Manshouri T, Pilling D, Bueso-Ramos CE, Newberry KJ, Prijic S, Knez L, Bozinovic K, Harris DM, Spaeth EL, Post SM, Multani AS, Rampal RK, Ahn J, Levine RL, Creighton CJ, Kantarjian HM, Estrov Z. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis. J. Exp. Med. 2016;21(9):1723-1740.

    Article  Google Scholar 

  22. Wagner-Ballon O, Chagraoui H, Prina E, Tulliez M, Milon G, Raslova H, Villeval JL, Vainchenker W, Giraudier S. Monocyte/macrophage dysfunctions do not impair the promotion of myelofibrosis by high levels of thrombopoietin. J. Immunol. 2006;176(11):6425-6433.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J.C, Novetsky A, Chen C, Novetsky AD. Plasma matrix metalloproteinase and tissue inhibitor of metalloproteinase in patients with agnogenic myeloid metaplasia or idiopathic primary myelofibrosis. Br. J. Haematol. 2002;119(3):709-712.

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Zhou Y, Tan R, Xiong M, He W, Fang L, Wen P, Jiang L, Yang J. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am. J. Physiol. 2010;299(5):F973-F982.

    CAS  Google Scholar 

  25. Wynn TA. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008;214(2):199-210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Silyutina.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 258-264, October, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silyutina, A.A., Gin, I.I., Prikhod’ko, S.S. et al. Monocytes with Oncogenic Mutation JAK2 V617F as a Tool for Studies of the Pathogenic Mechanisms of Myelofibrosis. Bull Exp Biol Med 164, 569–575 (2018). https://doi.org/10.1007/s10517-018-4033-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4033-x

Key Words

Navigation