Skip to main content
Log in

KrioBlast TM as a New Technology of Hyper-fast Cryopreservation of Cells and Tissues. Part I. Thermodynamic Aspects and Potential Applications in Reproductive and Regenerative Medicine

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Kinetic (dynamic) vitrification is a promising trend in cryopreservation of biological materials because it allows avoiding the formation of lethal intracellular ice and minimizes harmful effects of highly toxic penetrating cryoprotectants. A uniform cooling protocol and the same instruments can be used for practically all types of cells. In modern technologies, the rate of cooling is essentially limited by the Leidenfrost effect. We describe a novel platform for kinetic vitrification of biological materials KrioBlastTM that realizes hyper-fast cooling and allows overcoming the Leidenfrost effect. This opens prospects for creation of a novel technology of cell cryopreservation for reproductive and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Arkharov AM, Marfenina IV, Mikulin EI. Theory and Computational Methods for Cryogenic Systems. Moscow, 1978. P. 389-400. Russian.

  2. Bernstein AD, Petropavlosky VV. The influence of nonelectrolytes on survival of spermatozoa (message III). Byull. Eksp. Biol. Med. 1937;3(1):41-43. Russian.

    Google Scholar 

  3. Graevskii EYu. Glassy state of the prototoplasm under conditions of deep cold. Usphekhi Sovremen. Biol. 1948;14(4):186-202. Russian.

    Google Scholar 

  4. Smirnov IV. Conservation of semen of domestic animals by deep cooling. Sovet. Zootekhniya. 1949;(4):63-65. Russian.

  5. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21(4):407-426.

    Article  CAS  PubMed  Google Scholar 

  6. Isachenko E, Isachenko V, Katkov II, Dessole S, Nawroth F. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod. Biomed. Online. 2003;6(2):191-200.

    Article  PubMed  Google Scholar 

  7. Katkov II, Bolyukh AF, Chernetsov OA, Dudin PI, Grigoriev AY, Isachenko VV, Isachenko E, Lulat AG-M, Moskovtsev SI, Petrushko MP, Pinyaev VI, Sushko AB, Sokol KM, Sokol YI, Yakhnenko I. Kinetic vitrification of spermatozoa of vertebrates: what can we learn from nature? Current Frontiers in Cryobiology. Katkov II, ed. InTech Open Access Books, 2012;(Ch. 1):3-40. URL: http://www.intechopen.com/books/current-frontiers-in-cryobiology.

  8. Katkov II, Bolyukh VF, Lupikov VS. Method and device for hyper-fast cooling of small samples. US Patent 9,557,090. 2017, Assignee: CELLTRONIX, priority April 6, 2011.

  9. Katkov II, Isachenko V, Isachenko E. Vitrification in small quenched volumes with a minimal amount of, or without vitrificants: basic biophysics and thermodynamics. Vitrification in Assisted Reproduction: a User’s Manual and Troubleshooting Guide. Tucker MJ, Liebermann J, eds. London, 2007. P. 21-32.

  10. Katkov II, Kan NG, Cimadamore F, Nelson B, Snyder EY, Terskikh AV. DMSO-free programmed cryopreservation of fully dissociated and adherent human induced pluripotent stem cells. Stem Cells Int. 2011;2011. ID 981606. doi: 10.4061/2011/981606.

  11. Luyet BE. The vitrification of organic colloids and of protoplasm. Biodynamica. 1937;1:1-14.

  12. Luyet B, Hodapp A. Revival of frog’s spermatozoa vitrified in liquid air. Proc. Meet Soc. Exp. Biol. 1938;39:433-434.

    Article  Google Scholar 

  13. Mazur P. Cryobiology: the freezing of biological systems. Science. 1970;168:939-949.

    Article  CAS  PubMed  Google Scholar 

  14. Mazur P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 1984;247(3, Pt 1):C125-C142.

  15. Mazur P, Leibo SP, Chu EH. A two-factor hypothesis of freezing injury: evidence from chinese hamster tissue-culture cells. Exp. Cell Res. 1972;71(2):345-355.

    Article  CAS  PubMed  Google Scholar 

  16. Mazur P, Leibo SP, Seidel GE Jr. Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol. Reprod. 2008;78(1):2-12.

    Article  CAS  PubMed  Google Scholar 

  17. Parkes AS. Preservation of spermatozoa at low temperatures. Br. Med. J. 1945;2:212-213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164:666.

    Article  CAS  PubMed  Google Scholar 

  19. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature. 1985;313:573-575.

    Article  CAS  PubMed  Google Scholar 

  20. Saragusty J, Arav A. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction. 2011;141(1):1-19.

    Article  CAS  PubMed  Google Scholar 

  21. Warkentin M, Stanislavskaia V, Hammes K, Thorne RE. Cryocrystallography in capillaries: critical glycerol concentrations and cooling rates. J. Appl. Crystallogr. 2008;41(Pt 4):791-797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Katkov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 216-221, October, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katkov, I.I., Bolyukh, V.F. & Sukhikh, G.T. KrioBlast TM as a New Technology of Hyper-fast Cryopreservation of Cells and Tissues. Part I. Thermodynamic Aspects and Potential Applications in Reproductive and Regenerative Medicine. Bull Exp Biol Med 164, 530–535 (2018). https://doi.org/10.1007/s10517-018-4027-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4027-8

Key Words

Navigation