Skip to main content

Advertisement

Log in

Peculiarities of Cyto- and Chemoarchitectonics of Human Entorhinal Cortex during the Fetal Period

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied peculiarities of the structure of human entorhinal cortex at weeks 20-26 of gestation (10 hemispheres). The samples were Nissl-stained and immunohistochemically treated with antibodies to parvalbumin, calretinin, calbindin, and cytoskeleton proteins (MAP2 and N200). 3D-reconstruction of the entorhinal cortex from serial sections was performed, caudomedial and rostrolateral areas were isolated. Parvalbumin+ cells in layer I, discrete distribution of layer II cells with colocalization of MAP2 and calretinin at the border with layer I, and two sublayers Va and Vb with MAP2+ neurons were typical for the caudomedial area. Rostrolateral area was characterized by the homogenous layer II with big amount of cells, high density of MAP2+ neurons only in layer III, and the unique layer V. Reelin+ Cajal—Retzius cells and N200+ fiber plexus in layer I were observed in the caudomedial and rostrolateral areas of the entorhial cortex. Layer IV was represented by a cell-free desiccant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogolepova IN. Comparative Ontogeny of Cortex Formations in Human and Monkey Brain. Moscow, 2005. Russian.

  2. Beall MJ, Lewis AD. Heterogeneity of layer II neurons in human entorhinal cortex. J. Comp. Neurol. 1992;321(2):241-266.

    Article  CAS  PubMed  Google Scholar 

  3. Berger B, Alvarez C. Neurochemical development of the hippocampal region in the fetal rhesus monkey. II. Immunocytochemistry of peptides, calcium-binding proteins, darpp-32, and monoamine innervation in the entorhinal cortex by the end of gestation. Hippocampus. 1994;4(1):85-114.

    Article  CAS  PubMed  Google Scholar 

  4. Braak Н, Braak Е. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci. Res. 1992;15(1-2):6-31.

    Article  CAS  PubMed  Google Scholar 

  5. Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ. TrakEM2 software for neural circuit reconstruction. PLoS One. 2012;7(6):e38011. doi: https://doi.org/10.1371/journal.pone.0038011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grateron L, Cebada-Sanchez S, Marcos P, Mohedano-Moriano A, Insausti AM, Muñoz M, Arroyo-Jimenez MM, Martinez-Marcos A, Artacho-Perula E, Blaizot X, Insausti R. Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex. J. Chem. Neuroanat. 2003;26(4):311-316.

    Article  CAS  PubMed  Google Scholar 

  7. Hevner RF, Kinney HC. Reciprocal entorhinal-hippocampal connections established by human fetal midgestation. J. Comp. Neurol. 1996;372(3):384-394.

    Article  CAS  PubMed  Google Scholar 

  8. Honig LS, Herrmann K, Shatz CJ. Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Cereb. Cortex. 1996;6(6):794-806.

    Article  CAS  PubMed  Google Scholar 

  9. Insausti R, Tuñón T, Sobreviela T, Insausti AM, Gonzalo LM. The human entorhinal cortex: a cytoarchitectonic analysis. J. Comp. Neurol. 1995;355(2):171-198.

    Article  CAS  PubMed  Google Scholar 

  10. Kostović I, Petanjek Z, Judas M. Early areal differentiation of the human cerebral cortex: entorhinal area. Hippocampus. 1993;3(4):447-458.

    Article  PubMed  Google Scholar 

  11. Maass A, Berron D, Libby LA, Ranganath C, Düzel E. Functional subregions of the human entorhinal cortex. Elife. 2015. Jun 8. doi: 10.7554/eLife.06426.

  12. Naumann RK, Ray S, Prokop S, Las L, Heppner FL, Brecht M. Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex. J. Comp. Neurol. 2016;524(4):783-806.

    Article  CAS  PubMed  Google Scholar 

  13. Rolls ET. Limbic systems for emotion and for memory, but no single limbic system. Cortex. 2015;62:119-157.

    Article  PubMed  Google Scholar 

  14. Rowland DC, Roudi Y, Moser MB, Moser EI. Ten years of grid cells. Annu. Rev. Neurosci. 2016;39:19-40.

    Article  CAS  PubMed  Google Scholar 

  15. Tkachenko LA, Zykin PA, Nasyrov RA, Krasnoshchekova EI. Distinctive features of the human marginal zone and Cajal-Retzius cells: comparison of morphological and immunocytochemical features at midgestation. Front. Neuroanat. 2016;10:26. doi: https://doi.org/10.3389/fnana.2016.00026.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Zykin.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 164, No. 10, pp. 500-505, October, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zykin, P.A., Moiseenko, I.A., Tkachenko, L.A. et al. Peculiarities of Cyto- and Chemoarchitectonics of Human Entorhinal Cortex during the Fetal Period. Bull Exp Biol Med 164, 497–501 (2018). https://doi.org/10.1007/s10517-018-4020-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4020-2

Key Words

Navigation