Skip to main content
Log in

Algorithm of Molecular and Biological Assessment of the Mechanisms of Sensitivity to Drug Toxicity by the Example of Cyclophosphamide

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Comparative study of the liver, blood, and spleen of DBA/2JSto and BALB/cJLacSto mice sensitive and resistant to acute toxicity of the cyclophosphamide allowed us to reveal basic toxicity biomarkers of this antitumor and immunosuppressive agent. Obtained results can be used for the development of an algorithm for evaluation of toxic effects of drugs and food components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Izotov MV, Shcherbakov VM, Devichenskii VM, Lugovaya LV, Benediktova SA, Saprin AN. Differences in the localization of active centers of cytochromes P-450 and P-448 in rat liver microsomes. Dokl. Akad. Nauk SSSR. 1986;287:1244-1248. Russian.

    CAS  PubMed  Google Scholar 

  2. Telegin LYu. Pharmacogenetics of Cyclophosphamide. Moscow, 2017. Russian.

  3. Telegin LYu, Zhirnov GF, Mazurov AV, Pevnitskii LA. Immunodepressive effect of cyclophosphamide activatedin vitro by liver microsomes from mice of different lines. Bull. Exp. Biol. Med. 1981;92(1):922-925.

    Article  Google Scholar 

  4. Telegin LY, Pisarev VM, Pevnitsky LA. Cyclophosphamide enhances the immunosuppressive action of its own active metabolites. Doklady Biol. Sci. 2008;423(1):437-439.

    Article  CAS  Google Scholar 

  5. Aitchison KJ, Munro J, Wright P, Smith S, Makoff AJ, Sachse C, Sham PC, Murray RM, Collier DA, Kerwin RW. Failure to respond to treatment with typical antipsychotics is not associated with CYP2D6 ultrarapid hydroxylation. Br. J. Clin. Pharmacol. 1999;48(3):388-394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alarcon RA. Fluorometric determination of acrolein and related compounds with m-aminophenol. Anal. Chem. 1968;40(11):1704-1708.

    Article  CAS  PubMed  Google Scholar 

  7. Andersson BS, Sadeghi T, Siciliano MJ, Legerski R, Murray D. Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs. Cancer Chemother. Pharmacol. 1996;38(5):406-416.

    Article  CAS  PubMed  Google Scholar 

  8. Chan KK, Hong PS, Tutsch K, Trump DL. Clinical pharmacokinetics of cyclophosphamide and metabolites with and without SR-2508. Cancer Res. 1994;54(24):6421-6429.

    CAS  PubMed  Google Scholar 

  9. Hipkens JH, Struck RF, Gurtoo HL. Role of aldehyde dehydrogenase in the metabolism-dependent biological activity of cyclophosphamide. Cancer Res. 1981;41(9, Pt 1):3571-3583.

    CAS  PubMed  Google Scholar 

  10. Izotov MV, Shcherbakov VM, Devichensky VM, Spiridonova SM, Lugovaja LV, Benediktova SA. The ratio of two isozyme groups in microsomal cytochrome P-450 under exogenous influence of carbon tetrachloride and cyclophosphamide. Biothechnol. Appl. Biochem. 1988;10(6):545-550.

    CAS  Google Scholar 

  11. Kato S, Ishii H, Kano S, Hagihara S, Todoroki T, Nagata S, Takahashi H, Shigeta Y, Tsuchiya M. Alcohol dehydrogenase: a new sensitive marker of hepatic centrilobular damage. Alcohol. 1985;2(1):35-38.

    Article  CAS  PubMed  Google Scholar 

  12. Nebert DW, Jorge-Nebert L, Vesell ES. Pharmacogenomics and “individualized drug therapy”: high expectations and disappointing achievements. Am. J. Pharmacogenomics. 2003;3(6):361-370.

    Article  PubMed  Google Scholar 

  13. Nordenskjöld M, Moldéus P, Lambert B. Effects of ultraviolet light and cyclophosphamide on replication and repair synthesis of DNA in isolated rat liver cells and human leukocytes coincubated with microsomes. Hereditas. 1978;89(1):1-6.

    Article  PubMed  Google Scholar 

  14. Pevnitsky LA, Telegin LY, Zhirnov GF, Mazurov AV, Viktorov VV. Sensitivity of immunodepressant action of cyclophosphamide: analysis of interstrain differences in mice. Int. J. Immunopharmacol. 1985;7(6):875-880.

    Article  CAS  PubMed  Google Scholar 

  15. Pinto N, Ludeman SM, Dolan ME. Drug focus: Pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics. 2009;10(12):1897-1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schlenke P, Kisro J, Deeken M, Zajac S, Klich S, Wagner T. The cytotoxicity of mafosfamide on G-CSF mobilized hematopoietic progenitors is reduced by SH groups of albumin — implications for further purging strategies. Bone Marrow Transplant. 1999;23(2):157-161.

    Article  CAS  PubMed  Google Scholar 

  17. Takizawa D, Kakizaki S, Horiguchi N, Tojima H, Yamazaki Y, Ichikawa T, Sato K, Mori M. Histone deacetylase inhibitors induce cytochrome P450 2B by activating nuclear receptor constitutive androstane receptor. Drug Metab. Dispos. 2010;38(9):1493-1498.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Tian Q, Zhu YZ, Xu AL, Zhou SF. Reversal of resistance to oxazaphosphorines. Curr. Cancer Drug Targets. 2006;6(5):385-407.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Telegin.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 164, No. 9, pp. 302-308, September, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telegin, L.Y., Sarmanaev, S.K., Devichenskii, V.M. et al. Algorithm of Molecular and Biological Assessment of the Mechanisms of Sensitivity to Drug Toxicity by the Example of Cyclophosphamide. Bull Exp Biol Med 164, 324–329 (2018). https://doi.org/10.1007/s10517-018-3982-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-3982-4

Key Words

Navigation