Skip to main content
Log in

Structural Dynamics of Chondrocytes during Culturing

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We performed comparative analysis of the morphology of chondrocytes in normal cartilage, after their isolation from the tissue, and at different stages of culturing; structural dynamics of cells during culturing was also studied. Significant morphological differences in chondrocytes at the specified stages of their preparation to in vivo use were revealed. Pronounced structural changes (blebbing and cytoplasm swelling) were found in chondrocytes before their implantation, which can affect the formation of cartilage regenerate. The study was performed using light microscopy methods including time-lapse recording of the cell cultures with differential interference Nomarski contrasting combined with transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Omelianenko NP, Ilyina VK, Kovalev AV, Kalsin VA, Rodionov SA. Structural dynamics of adhesive bone marrow cells by cultivation: primary passage (part 1). Geny Kletki. 2012;7(4):28-37. Russian.

    Google Scholar 

  2. Omelianenko NP, Ilyina VK, Kovalev AV, Rodionov SA. Structural dynamics of adhesive bone marrow cells in cultivation: first passage (part 2). Geny Kletki. 2014;9(4):56-62. Russian.

    Google Scholar 

  3. Omelianenko NP, Slutskii LI. Cartilage — cartilaginous tissue: structural and functional characterization, biochemical and molecular biological characteristics. Connective tissue (histophysiology and biochemistry). Vol. 2. Mironov SP, ed. Moscow, 2008. P. 41-188.

  4. Anderer U, Libera J. In vitro engineering of human autogenous cartilage. J. Bone Miner. Res. 2002;17(8):1420-1429.

    Article  PubMed  Google Scholar 

  5. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 1994;331(14):889-895.

    Article  CAS  PubMed  Google Scholar 

  6. Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am. J. Sports Med. 2010;38(6):1259-1271.

    Article  PubMed  Google Scholar 

  7. Caron MM, Emans PJ, Coolsen MM, Voss L, Surtel DA, Cremers A, van Rhijn LW, Welting TJ. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage. 2012;20(10):1170-1178.

    Article  CAS  PubMed  Google Scholar 

  8. Charras GT. A short history of blebbing. J. Microscopy. 2008;231(Pt 3):466-478.

    Article  CAS  Google Scholar 

  9. Coates EE, Fisher JP. Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli. Ann. Biomed. Eng. 2010;38(11):3371-3388.

    Article  PubMed  Google Scholar 

  10. Croft DR, Coleman ML, Li S, Robertson D, Sullivan T, Stewart CL, Olson MF. Actin-myosinbased contraction is responsible for apoptotic nuclear disintegration. J. Cell Biol. 2005;168(2):245-255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cuéllar VG, Cuéllar JM, Kirsch T, Strauss EJ. Correlation of synovial fluid biomarkers with cartilage pathology and associated outcomes in knee. Arthroscopy. 2016;32(3):475-485.

    Article  PubMed  Google Scholar 

  12. Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res;23(2):425-432.

  13. Filardo G, Kon E, Di Martino A, Iacono F, Marcacci M. Arthroscopic second-generation autologous chondrocyte implantation: a prospective 7-year follow-up study. Am. J. Sports Med. 2011;39(10):2153-2160.

    Article  PubMed  Google Scholar 

  14. Gille J, Behrens P, Volpi P, de Girolamo L, Reiss E, Zoch W, Anders S. Outcome of Autologous Matrix Induced Chondrogenesis (AMIC): in cartilage knee surgery: data of the AMIC Registry. Arch. Orthop. Trauma Surg. 2013;133(1):87-93.

    Article  CAS  PubMed  Google Scholar 

  15. Libera J, Ruhnau K, Baum P, Lüthti U, Schreyer T, Meyer U, Wiesmann H, Herrmann A, Korte T, Pullig U, Siodla V. Cartilage engineering. Fundamentals of Tissue Engineering and Regenerative Medicine. Meyer U, Meyer Th, Handschel J, Wiesmann HP, eds. Berlin, 2009. P. 233-242.

  16. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti GL, Stefani G, Zanasi S. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin. Orthop. Relat. Res. 2005;(435):96-105.

  17. Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res. 2000;(374):212-234.

    Article  Google Scholar 

  18. Ryan JM, Flanigan DC. Emerging technologies: What is the future of cartilage restoration? Hard Tissue. 2013;2(2):12.

    Google Scholar 

  19. Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Löer I, Barthel T, Rudert M, Nöth U. A prospective multicenter study on the outcome of type I collagen hydrogelbased autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am. J. Sports Med. 2011;39(12):2558-2565.

    Article  PubMed  Google Scholar 

  20. Steinwachs M, Kreuz PC. Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy. 2007;23(4):381-387.

    Article  PubMed  Google Scholar 

  21. Wickman G, Julian L, Olson MF. How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ. 2012;19(5):735-742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Youn I, Choi JB, Cao L, Setton LA, Guilak F. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthritis and Cartilage. 2006;14(9):889-897.

    Article  CAS  PubMed  Google Scholar 

  23. Zaslav K, Cole B, Brewster R, DeBerardino T, Farr J, Fowler P, Nissen C; STAR Study Principal Investigators. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. Am. J. Sports Med. 2009;37(1):42-55.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Rodionov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 184-191, July, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omelyanenko, N.P., Rodionov, S.A. Structural Dynamics of Chondrocytes during Culturing. Bull Exp Biol Med 164, 274–280 (2017). https://doi.org/10.1007/s10517-017-3972-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3972-y

Key Words

Navigation