Skip to main content

Advertisement

Log in

Modifying Effect of Autotransfusion of Mesenchymal Stromal Cells on the Production of Reactive Oxygen Species and Cytokines by Mononuclear Cells in Patients with Chronic Heart Failure

  • СELL TECHNOLOGIES IN BIOLOGY AND MEDICINE
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied in vivo modifying effect of autotransfusion of human bone marrow mesenchymal stromal cells on ROS generation and production of cytokines (TNFα,TNFβ, IL-1α, IL-10, IFNγ, and GM-CSF) and PGE2 by mononuclear cells of patients (N=21) with chronic heart failure. These parameters were evaluated prior to (control) and after (immediately and on day 14) intravenous administration of stromal cells in doses of 100-200×106. Immediately after autotransfusion, significant increase of in vitro zymosan-induced chemiluminescence of blood mononuclear cells from 10 patients was observed. At later terms after autotransfusion (day 14), inhibition of chemiluminescent activity of blood mononuclear cells was revealed in 50% patients. We discuss possible mechanisms of involvement of transplanted autologous bone marrow mesenchymal stromal cells in reprogramming of blood mononuclear phagocytes from the pro- to anti-inflammatory phenotype under conditions of their in vivo interaction manifesting in transition from activation to inhibition of ROS-producing activity of macrophages and significant suppression of in vitro LPS-induced production of TNFα and GM-CSF by blood mononuclears against the background of significantly elevated TNFβ, IL-10, and IL-1α concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreeva ER, Buravkova LB. Multipotent mesenchymal stromal and immune cells interaction: reciprocal effects. Ross. Fiziol. Zh. 2012;98(12):1441-1459. Russian.

    CAS  Google Scholar 

  2. Mayanskaya IV, Goganova AYu, Tolkachova NI, Achkinazi VI, Mayansky AN. Immunosuppressive activity of mesenchymal stem (stromal) cells. Immunologiya. 2013;34(2):122-128. Russian.

    Google Scholar 

  3. Petrov VN, Konoplyannikov AG, Sayapina EV, Konoplyannikova OA, Lepekhina LA, Kal’sina SSh, Semenkova IV, Agaeva EV. In vitro modifying the effect of mesenchymal stem cells on production of reactive oxygen species by macrophagez in allogeneic and xenogeneic co-culturing systems. Autologous Stem Cells: Experimental Studies and Prospects of Clinical Application. Tkachuk VA, ed. Moscow, 2009. P. 429-448. Russian.

  4. Tsyb AF, Konoplyannikov AG, Kaplan MA, Popovkina OE, Lepekhina LA, Kal’sina SSh, Semenkova IV, Agaeva EE, Danilenko AA. The use of systemic transplantation of “cardiomyoblasts” derived from autologous bone marrow mesenchymal stem cells in the complex therapy of patients with chronic heart failure. Geny Kletki. 2009;4(1):78-84. Russian.

    Google Scholar 

  5. Tsyb AF, Konoplyannikov AG, Kolesnikova AI, Pavlov VV. Preparation and clinical application of human bone marrow mesenchymal stem cell cultures. Vestn. Ross. Akad. Med. Nauk. 2004;(9):71-76. Russian.

    Google Scholar 

  6. Tsyb AF, Yuzhakov VV, Roshal’ LM, Sukhikh GT, Konoplyannikov AG, Sushkevich GN, Yakovleva ND, Ingel’ IE, Bandurko LN, Sevan’kaeva LE, Mikhina LN, Fomina NK, Marei MV, Semenova ZhB, Konoplyannikova OA, Kalsina SSh, Lepekhina LA, Semenkova IV, Agaeva EV, Shevchuk AS, Pavlova LN, Tokarev OY, Karaseva OV, Chernyshova TA. Morphofunctional study of the therapeutic efficacy of human mesenchymal and neural stem cells in rats with diffuse brain injury. Bull. Exp. Biol. Med. 2009;147(1):132-146.

    Article  CAS  PubMed  Google Scholar 

  7. Schwartz YS, Svistelnik AV. Functional phenotypes of macrophages and the M1-M2 polarization concept. Part I. Proinflammatory phenotype. Biochemistry (Mosc.). 2012;77(3):246-260.

    Article  CAS  PubMed  Google Scholar 

  8. Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schäfer R, Sella S, Rodeghiero F. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther. 2016;7(1):93.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Belema-Bedada F, Uchida S, Martire A, Kostin S, Braun T. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell. 2008;2(6):566-575.

    Article  CAS  PubMed  Google Scholar 

  10. Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N, Cont C, Calzetti F, Pelletier M, Pizzolo G, Krampera M. Tolllike receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells. 2011;29(6):1001-1011.

    Article  CAS  PubMed  Google Scholar 

  11. de Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F. Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal. 2016;12(4):595-609.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fontaine MJ, Shih H, Schäfer R, Pittenger MF. Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus. Med. Rev. 2016;30(1):37-43.

    Article  PubMed  Google Scholar 

  13. Glenn JD, Whartenby KA. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J. Stem Cells. 2014;6(5):526-539.

    Article  Google Scholar 

  14. Gómez-Aristizábal A, Kim KP, Viswanathan S. A Systematic study of the effect of different molecular weights of hyaluronic acid on mesenchymal stromal cell-mediated immunomodulation. PLoS One. 2016;11(1):e0147868. doi: https://doi.org/10.1371/journal. pone.0147868.

  15. Goodridge HS, Simmons RM, Underhill D.M. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J. Immunol. 2007;178(5):3107-3115.

    Article  CAS  PubMed  Google Scholar 

  16. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong Po Foo C, Ruiz P, Amador A, Da Silva J, McNiece IK, Heldman AW, George R, Lardo A. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308(22):2369-2379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoogduijn MJ, Crop MJ, Peeters AM, Korevaar SS, Eijken M, Drabbels JJ, Roelen DL, Maat AP, Balk AH, Weimar W, Baan CC. Donor-derived mesenchymal stem cells remain present and functional in transplanted human heart. Am. J. Transplant. 2009;9(1):222-230.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang CY, Gui C, He AN, Hu XY, Chen J, Jiang Y, Wang JA. Optimal time for mesenchymal stem cell transplantation in rats with myocardial infarction. J. Zhejiang Univ Sci B. 2008;9(8):630-637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kelly EK, Wang L, Ivashkiv LB. Calcium-activated pathways and oxidative burst mediate zymosan-induced signaling and IL-10 production in human macrophages. J. Immunol. 2010;184(10):5545-5552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response. Immunol. Lett. 2015;168(2):140-146.

    Article  PubMed  Google Scholar 

  21. Lee RH, Pulin A.A, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54-63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res. Ther. 2016;7:7. doi: https://doi.org/10.1186/s13287-015-0271-2.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin YC, Leu S, Sun CK, Yen CH, Kao YH, Chang LT, Tsai TH, Chua S, Fu M, Ko SF, Wu CJ, Lee FY, Yip HK. Early combined treatment with sildenafil and adipose-derived mesenchymal stem cells preserves heart function in rat dilated cardiomyopathy. J. Transl. Med. 2010;8:88. doi: https://doi.org/10.1186/1479-5876-8-88.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Molina ER, Smith BT, Shah SR, Shin H, Mikos AG. Immunomodulatory properties of stem cells and bioactive molecules for tissue engineering. J. Contol. Release. 2015;219):107-118.

    Article  CAS  Google Scholar 

  25. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, Ottonello L, Pistoia V. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells. 2008;26(1):151-162.

    Article  CAS  PubMed  Google Scholar 

  26. Selleri S, Bifsha P, Civini S, Pacelli C, Dieng M.M, Lemieux W, Jin P, Bazin R, Patey N, Marincola F.M, Moldovan F, Zaouter C, Trudeau L.E, Benabdhalla B, Louis I, Beauséjour C, Stroncek D, Le Deist F, Haddad E. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming. Oncotarget. 2016;7(21):30 193-30 210.

    Article  Google Scholar 

  27. Sharma RR, Pollock K, Hubel A, McKenna D. Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion. 2014;54(5):1418-1437.

    Article  CAS  PubMed  Google Scholar 

  28. van den Akker F, de Jager S.C, Sluijter JP. Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of toll-like receptors. Mediators Inflamm. 2013;2013. ID 181020. doi: https://doi.org/10.1155/2013/181020.

  29. Zheng G, Ge M, Qiu G, Shu Q, Xu J. Mesenchymal stromal cells affect disease outcomes via macrophage polarization. Stem Cells Int. 2015;2015. ID 989473. doi: https://doi.org/10.1155/2015/989473.

  30. Zimmermann JA, Hettiaratchi M.H, McDevitt T.C. Enhanced immunosuppression of T cells by sustained presentation of bioactive interferon-γ within three-dimensional mesenchymal stem cell constructs. Stem Cells Transl. Med. 2017;6(1):223-237.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Agaeva.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 139-147, July, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, V.N., Agaeva, E.V., Popovkina, O.E. et al. Modifying Effect of Autotransfusion of Mesenchymal Stromal Cells on the Production of Reactive Oxygen Species and Cytokines by Mononuclear Cells in Patients with Chronic Heart Failure. Bull Exp Biol Med 164, 233–240 (2017). https://doi.org/10.1007/s10517-017-3965-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3965-x

Key Words

Navigation