Skip to main content
Log in

High Potassium Concentration during Culturing of Early Mammalian Embryos: Normal or Extreme Situation?

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Analysis of the element composition of oviduct and uterine fluid in mammals showed high potassium concentrations in the early embryo microenvironment in vivo. The results of early embryogenesis of mammals in vitro in the presence of high potassium concentrations are discussed. The data are summarized in accordance with the conditions of experimentally modeled pre-implantation development. Comparative assessment of the quality of embryo development until the blastocyst stage in vitro proved the embryos more successfully developed at potassium concentrations close to those registered in the oviductal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gol’dshtein DV, Pogorelov AG, Chailakhyan TA, Smirnov AA. Changes in intracellular potassium concentration in a onecell mouse embryo after enucleation. Bull. Exp. Biol. Med. 2004;138(9):243-244.

    Article  PubMed  Google Scholar 

  2. Gol’dshtein DV, Smol’yaninova EI, Pogorelov AG. Potassium assay in blastomere of two-cell mouse embryo after equilibration and washing from cryoprotector. Bull. Exp. Biol. Med. 2004;138(7):40-41.

    Article  PubMed  Google Scholar 

  3. Pogorelova MA, Golichenkov VA, Pogorelova VN, Panait AI, Smirnov AA, Pogorelov AG. Amino acid correction of regulatory volume decrease evoked by hypotonic stress in mouse oocytes in vitro. Bull. Exp. Biol. Med. 2015;159(1):35-37.

    Article  CAS  PubMed  Google Scholar 

  4. Pogorelov AG, Smirnov AA, Pogorelova VN. Hypoxia during mammalian preimplantation development: Extreme circumstance vs. typical environment. Russ. J. Development. Biol. 2016;47(2):99-102.

    Article  CAS  Google Scholar 

  5. Appel SH, Autilio L, Festoff BW, Escueta AV. Biochemical studies of synapses in vitro. 3. Ionic activation of protein synthesis. J. Biol. Chem. 1969;244(12):3166-3172.

    CAS  PubMed  Google Scholar 

  6. Baltz JM, Smith SS, Biggers JD, Lechene C. Intracellular ion concentrations and their maintenance by Na+/K(+)-ATPase in preimplantation mouse embryos. Zygote. 1997;5(1):1-9.

    Article  CAS  PubMed  Google Scholar 

  7. Biggers JD. Pioneering mammalian embryo culture. Mammalian Preimplantaion Embryo. Bavister BD, ed. New York, 1987. P. 1-22.

  8. Biggers JD. Reflections on the culture of the preimplantation embryo. Int. J. Dev. Biol. 1998;42(7):879-884.

    CAS  PubMed  Google Scholar 

  9. Biggers JD. Brinster RL. Biometrical problems in the study of early mammalian embryos in vitro. J. Exp. Zool. 1965;158:39-47.

    Article  CAS  PubMed  Google Scholar 

  10. Biggers JD, Gwatkin RB, Brinster RL. Development of mouse embryos in organ cultures of fallopian tubes on a chemically defined medium. Nature. 1962;194:747-749.

    Article  CAS  PubMed  Google Scholar 

  11. Borland RM, Biggers JD, Lechene CP, Taymor ML. Elemental composition of fluid in the human Fallopian tube. J. Reprod. Fertil. 1980;58(2):479-482.

    Article  CAS  PubMed  Google Scholar 

  12. Borland RM, Hazra S, Biggers JD, Lechene CP. The elemental composition of the environments of the gametes and preimplantation embryo during the initiation of pregnancy. Biol. Reprod. 1977;16(2):147-157.

    Article  CAS  PubMed  Google Scholar 

  13. Bowman P, McLaren A. Cleavage rate of mouse embryos in vivo and in vitro. J. Embryol. Exp. Morphol. 1970;24(1):203-207.

    CAS  PubMed  Google Scholar 

  14. Brinster RL. A method for in vitro cultivation of mouse ova from two-cell to blastocyst. Exp. Cell Res. 1963;32:205-208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brinster RL. Cultivation of the mammalian embryo. Growth, Nutrition and Metabolism of Cells in Culture. Rothblat G, Cristofalo V, eds. New York, 1972. Vol. II. P. 251-286.

  16. Brinster R.L., Thomson J.L. Development of eight-cell mouse embryos in vitro. Exp. Cell Res. 1966;42(2):308-315.

    Article  CAS  PubMed  Google Scholar 

  17. Busa WB, Nuccitelli R. Metabolic regulation via intracellular pH. Am. J. Physiol. 1984;246(4, Pt 2):R409-R438.

    CAS  PubMed  Google Scholar 

  18. Chang MC. Development and fate of transferred rabbit ova or blastocyst in relation to the ovulation time of recipients. J. Exp. Zool. 1950;114(1):197-225.

    Article  Google Scholar 

  19. Chang MC. Fertilization of rabbit ova in vitro. Nature. 1959;184(Suppl. 7):466-467.

    Article  PubMed  Google Scholar 

  20. Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I. An improved culture medium supports development of ran-dom-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 1989;86(2):679-688.

    Article  CAS  PubMed  Google Scholar 

  21. Cohen I, Daut J, Noble D. An analysis of the actions of low concentrations of ouabain on membrane currents in Purkinje fibres. J. Physiol. 1976;260(1):75-103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. David A, Brackett BG, Garcia CR, Mastroianni L Jr. Composition of rabbit oviduct fluid in ligated segments of the Fallopian tube. J. Reprod. Fertil. 1969;19(2):285-289.

    Article  CAS  PubMed  Google Scholar 

  23. David A, Serr DM, Czernobilsky B. Chemical composition of human oviduct fluid. Fertil. Steril. 1973;24(6):435-439.

    Article  CAS  PubMed  Google Scholar 

  24. Dott HM, White IG. Effect of potassium on ram spermatozoa studied by a flow dialysis technique. J. Reprod. Fertil. 1964;7:127-138.

    Article  CAS  PubMed  Google Scholar 

  25. Dumoulin JC, Evers JL, Bras M, Pieters MH, Geraedts JP. Positive effect of taurine on preimplantation development of mouse embryos in vitro. J. Reprod. Fertil. 1992;94(2):373-380.

    Article  CAS  PubMed  Google Scholar 

  26. Dumoulin JC, Evers JL, Michiels AH, Pieters MH, Bras M, Land JA, Geraedts JP. Modulation of embryonic Na(+)-K(+)-ATPase activity and mouse preimplantation development in vitro in media containing high concentrations of potassium. Mol. Reprod. Dev. 1993;36(3):320-327.

    Article  CAS  PubMed  Google Scholar 

  27. Eagle H. Amino acid metabolism in mammalian cell cultures. Science. 1959;130:432-437.

    Article  CAS  PubMed  Google Scholar 

  28. Elsheikh AS, Takahashi Y, Nagano M, Kanagawa H. Manipulated mouse embryos as bioassay system for water quality control. Reprod. Domest. Anim. 2003;38(3):204-208.

    Article  CAS  PubMed  Google Scholar 

  29. Fleetham J, Mahadevan MM. Purification of water for in vitro fertilization and embryo transfer. J. In Vitro Fert. Embryo Transf. 1988;5(3):171-174.

    Article  CAS  PubMed  Google Scholar 

  30. Fukuda A, Noda Y, Tsukui S, Matsumoto H, Yano J, Mori T. Influence of water quality on in vitro fertilization and embryo development for the mouse. J. In Vitro Fert. Embryo Transf. 1987;4(1):40-45.

    Article  CAS  PubMed  Google Scholar 

  31. Heap RB. Some chemical constituents of uterine washings: a method of analysis with results from various species. J. Endocrinol. 1962;24:367-378.

    Article  CAS  PubMed  Google Scholar 

  32. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 1995. 41(2):232-238.

    Article  CAS  PubMed  Google Scholar 

  33. Howard E, De Feo VJ. Potassium and sodium content of uterine and seminal vesicle secretions. Am. J. Physiol. 1959;196(1):65-68.

    CAS  PubMed  Google Scholar 

  34. Iritani A, Nishikawa Y, Gomes WR, VanDemark NL. Secretion rates and chemical composition of oviduct and uterine fluids in rabbits. J. Anim. Sci. 1971;33(4):829-835.

    Article  CAS  PubMed  Google Scholar 

  35. Kaplan JD. Membrane cation transport and the control of proliferation of mammalian cells. Annu. Rev. Physiol. 1978;40:19-41.

    Article  CAS  PubMed  Google Scholar 

  36. Kim NH, Menino AR Jr. Effect of different concentrations of potassium on pig embryos developing in vitro. J. Reprod. Fertil. 1997;111(2):229-233.

    Article  CAS  PubMed  Google Scholar 

  37. Lawitts JA, Biggers JD. Culture of preimplantation embryos. Methods in Enzimology: Guide to techniques in mouse development. Wassarman PM, DePamphilis ML, eds. New York, 1993. Vol. 225. P. 153-164.

  38. Lechene C. The use of electron microprobe to analyse very minute amounts of liquor samples. Proc. 5th Nat. Conf. Electron Probe Analysis. New York, 1970. P. 32A-32C.

  39. Lechene C. Electron probe microanalysis of picoliter liquid samples. Microprobe Analysis as Applied to Cells and Tissues. Hall T, Echlin P, Kaufmann R, eds. New York, 1974. P. 351-368.

  40. Lechene C, Morel F, Guinnebault M, De Rouffignac C. Micropuncture study of urine formation. I. In the rat during various diuretic states. Nephron. 1969;6(4):457-477.

    Article  CAS  PubMed  Google Scholar 

  41. Levin RJ, Edwards F. The transuterine endometrial potential difference, its variation during the oestrous cycle and its relation to uterine secretion. Life Sci. 1968;7(19):1019-1036.

    Article  CAS  PubMed  Google Scholar 

  42. Lippes J, Enders RG, Pragay DA, Bartholomew WR. The collection and analysis of human fallopian tubal fluid. Contraception. 1972;5(2):85-103.

    Article  CAS  PubMed  Google Scholar 

  43. Manejwala FM, Cragoe EJ Jr, Schultz RM. Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev. Biol. 1989;133(1):210-220.

    Article  CAS  PubMed  Google Scholar 

  44. Mastroianni L Jr,Wallach RC. Effect of ovulation and early gestation on ovi-duct secretions in the rabbit. Am. J. Physiol. 1961;200:815-818.

    CAS  Google Scholar 

  45. McLaren A, Biggers JD. Successful development and birth of mice cultivated in vitro as early as early embryos. Nature. 1958;182:877-878.

    Article  CAS  PubMed  Google Scholar 

  46. Mintz B. Mammalian embryo culture. Methods in Developmental Biology. Wilt FH, Wessells NK, eds. New York, 1967. P. 379-400.

  47. Nagao Y, Saeki K, Hoshi M, Takahashi Y, Kanagawa H. Effects of water quality on in vitro fertilization and development of bovine oocytes in protein-free medium. Theriogenology. 1995;44(3):433-444.

    Article  CAS  PubMed  Google Scholar 

  48. Pogorelov AG, Katkov II, Pogorelova VN. Influence of exposure to vitrification solutions on 2-cell mouse embryos: I. Intracellular potassium and sodium content. Cryo Letters. 2007;28(6):403-408.

    CAS  PubMed  Google Scholar 

  49. Pogorelov AG, Katkov II, Smolyaninova EI, Goldshtein DV. Changes in intracellular potassium and sodium content of 2-cell mouse embryos induced by exposition to vitrification concentrations of ethylene glycol. Cryo Letters. 2006;27(2):87-98.

    CAS  PubMed  Google Scholar 

  50. Powers RD, Tupper JT. Developmental changes in membrane transport and permeability in the early mouse embryo. Dev. Biol. 1977;56(2):306-315.

    Article  CAS  PubMed  Google Scholar 

  51. Purshottam N, Pincus G. In vitro cultivation of mammalian eggs. Anat. Rec. 1961;140:51-55.

    Article  CAS  PubMed  Google Scholar 

  52. Quinn P, Barros C, Whittingham DG. Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. J. Reprod. Fertil. 1982;66(1):161-168.

    Article  CAS  PubMed  Google Scholar 

  53. Ringler I. The composition of rat uterine luminal fluid. Endocrinology. 1961;68:281-291.

    Article  CAS  PubMed  Google Scholar 

  54. Roblero L, Biggers JD, Lechene CP. Electron probe analysis of the elemental microenvironment of oviducal mouse embryos. J. Reprod. Fertil. 1976;46(2):431-434.

    Article  CAS  PubMed  Google Scholar 

  55. Roblero L, Riffo MD. High potassium concentration improves preimplantation development of mouse embryos in vitro. Fertil. Steril. 1986;45(3):412-416.

    Article  CAS  PubMed  Google Scholar 

  56. Rozengurt E, Heppel LA. Serum rapidly stimulates ouabainsensitive 86-RB+ influx in quiescent 3T3 cells. Proc. Natl Acad. Sci. USA. 1975;72(11):4492-4495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scholnick P, Lang D, Racker E. Regulatory mechanisms in carbohydrate metabolism. IX. Stimulation of aerobic glycolysis by energy-linked ion transport and inhibition by dextran sulfate. J. Biol. Chem. 1973;248(14):5175.

    CAS  PubMed  Google Scholar 

  58. Schwarts A, Lindenmayer GE, Allen JC. The Na+-, K+-ATPase membrane transport system. Its importance in cellular function. Current Topics in Membranes and Transport. Bronner F, Kleinzeller A, eds. New York, 1972. Vol. 3. P. 1-82.

  59. Summers MC, Bhatnagar PR, Lawitts JA, Biggers JD. Fertilization in vitro of mouse ova from inbred and outbred strains: complete preimplantation embryo development in glucosesupplemented KSOM. Biol. Reprod. 1995;53(2):431-437.

    Article  CAS  PubMed  Google Scholar 

  60. Summers MC, McGinnis LK, Lawitts JA, Raffin M, Biggers JD. IVF of mouse ova in a simplex optimized medium supplemented with amino acids. Hum. Reprod. 2000;15(8):1791-1801.

    Article  CAS  PubMed  Google Scholar 

  61. Toyoda Y, Chang MC. Capacitation of epididymal spermatozoa in a medium with high K-Na ratio and cyclic AMP for the fertilization of rat eggs in vitro. J. Reprod. Fertil. 1974;36(1):125-134.

    Article  CAS  PubMed  Google Scholar 

  62. Van Winkle LJ, Campione AL. Ouabain-sensitive Rb+ uptake in mouse eggs and preimplantation conceptuses. Dev. Biol. 1991;146(1):158-166.

    Article  PubMed  Google Scholar 

  63. Wales RG, O’Shea T. The oxidative utilization of fructose and acetate by washed ram spermatozoa in the presence or absence of potassium and magnesium. Aust. J. Biol. Sci. 1966;19(1):167-180.

    CAS  PubMed  Google Scholar 

  64. Wallace JC, Wales RG. Effect of ions on the metabolism of ejaculated and epididymal ram spermatozoa. J. Reprod. Fertil. 1964;8:187-203.

    Article  CAS  PubMed  Google Scholar 

  65. Watson AJ, Kidder GM. Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis. Dev. Biol. 1988;126(1):80-90.

    Article  CAS  PubMed  Google Scholar 

  66. Whitten WK. Culture of tubal mouse ova. Nature. 1956;177:96.

    Article  CAS  PubMed  Google Scholar 

  67. Whittingham DG. Culture of mouse ova. J. Reprod. Fertil. Suppl. 1971;14:7-21.

    CAS  PubMed  Google Scholar 

  68. Wiley LM. Cavitation in the mouse preimplantation embryo: Na/K-ATPase and the origin of nascent blastocoele fluid. Dev. Biol. 1984;105(2):330-342.

    Article  CAS  PubMed  Google Scholar 

  69. Wiley LM, Yamami S, Van Muyden D. Effect of potassium concentration, type of protein supplement, and embryo density on mouse preimplantation development in vitro. Fertil. Steril. 1986;45(1):111-119.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Pogorelov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 55-60, January, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogorelov, A.G., Smirnov, A.A. & Pogorelova, V.N. High Potassium Concentration during Culturing of Early Mammalian Embryos: Normal or Extreme Situation?. Bull Exp Biol Med 163, 163–168 (2017). https://doi.org/10.1007/s10517-017-3758-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3758-2

Key Words

Navigation