Skip to main content
Log in

Effects of Different Modes of Hypobaric Hypoxia on the Content of Epigenetic Factors in the Rat in Neurons of Rat Neocortex

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effects of different modes of hypobaric hypoxia on the content of epigenetic factors acH3K24, meH3K9, and meDNA modulating conformational characteristics of chromatin and gene expression in neurons of associative complex of rat parietal neocortex. Severe destructive hypoxia dramatically reduced the level of acH3K24 in 3 h after the end of exposure and increased meH3K9 and meDNA content. By contrast, 3-fold (but not single) adaptive exposure to moderate hypobaric hypoxia that produced a neuroprotective effect enhanced neuronal acH3K24 expression and decreased both meH3K9 and meDNA levels. Elevated acH3K24 content facilitates, while increased content of meH3K9 hampers binding of transcription factors to the target genes. At the same time, increased expression of meDNA suppresses transcription. The role of modification of epigenetic mechanisms in the regulation of proadaptive genes under the effects of hypoxic exposure according to various protocols is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samoilov MO, Rybnikova EA. Molecular-cellular and hormonal mechanisms of induced tolerance of the brain to extreme environmental factors. Neurosci. Behav. Physiol. 2013;43(7):827-837.

    Article  CAS  Google Scholar 

  2. Churilova AV, Glushchenko TS, Samoilov MO. Changes in the expression of antiapoptotic protein BCL-2 in the rat neocortex and hippocampus in different hypobaric hypoxia regimes. Neurosci. Behav. Physiol. 2014;146(5):7-13.

    CAS  Google Scholar 

  3. Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell. 2002;108(4):475-487.

    Article  CAS  PubMed  Google Scholar 

  4. Papadopoulos MC, Giffard RG, Bell BA. An introduction to the changes in gene expression that occur after cerebral ischaemia. Br. J. Neurosurg. 2000;14(4):305-312.

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Perri JI, Acevedo JM, Wappner P. Epigenetics: new questions on the response to hypoxia. Int. J. Mol. Sci. 2011;12(7): 4705-4721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rybnikova E, Glushchenko T, Tyulkova E, Baranova K, Samoilov M. Mild hypobaric hypoxia preconditioning up-regulates expression of transcription factors c-Fos and NGFI-A in rat neocortex and hippocampus. Neurosci. Res. 2009;65(4):360-366.

    Article  CAS  PubMed  Google Scholar 

  7. Rybnikova E, Gluschenko T, Tulkova E, Churilova A, Jaroshevich O, Baranova K, Samoilov M. Preconditioning induces prolonged expression of transcription factors pCREB and NFkappa B in the neocortex of rats before and following severe hypobaric hypoxia. J. Neurochem. 2008;106(3):1450-1458.

    CAS  PubMed  Google Scholar 

  8. Rybnikova E, Sitnik N, Gluschenko T, Tjulkova E, Samoilov MO. The preconditioning modified neuronal expression of apoptosis-related proteins of Bcl-2 superfamily following severe hypobaric hypoxia in rats. Brain Res. 2006;1089(1):195-202.

    Article  CAS  PubMed  Google Scholar 

  9. Rybnikova E, Vataeva L, Tyulkova E, Gluschenko T, Otellin V, Pelto-Huikko M, Samoilov MO. Preconditioning prevents impairment of passive avoidance learning and suppression of brain NGFI-A expression induced by severe hypoxia. Behav. Brain Res. 2005;160(1):107-114.

    Article  CAS  PubMed  Google Scholar 

  10. Samoilov M, Churilova A, Gluschenko T, Rybnikova E. Neocortical pCREB and BDNF expression under different modes of hypobaric hypoxia: role in brain hypoxic tolerance in rats. Acta Histochem. 2014;116(5):949-957.

    Article  CAS  PubMed  Google Scholar 

  11. Schweizer S, Meisel A, Märschenz S. Epigenetic mechanisms in cerebral ischemia. J. Cereb. Blood Flow Metab. 2013;33(9): 1335-1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet. 2007;8(11):829-833.

    Article  CAS  PubMed  Google Scholar 

  13. Tsai YP, Wu KJ. Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int. J. Cancer. 2014;134(2):249-256.

    Article  PubMed  Google Scholar 

  14. Watson JA, Watson CJ, McCann A, Baugh J. Epigenetics, the epicenter of the hypoxic response. Epigenetics. 2010;5(4):293-296.

    Article  CAS  PubMed  Google Scholar 

  15. Yang J, Ledaki I, Turley H, Gatter KC, Montero JC, Li JL, Harris AL. Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases. Ann. N.Y. Acad. Sci. 2009;1177:185-197.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Churilova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 162, No. 12, pp. 686-690, December, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilov, M.O., Churilova, A.V., Glushchenko, T.S. et al. Effects of Different Modes of Hypobaric Hypoxia on the Content of Epigenetic Factors in the Rat in Neurons of Rat Neocortex. Bull Exp Biol Med 162, 722–725 (2017). https://doi.org/10.1007/s10517-017-3697-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3697-y

Key Words

Navigation