Skip to main content
Log in

Effects of NO Synthase Blocker L-NAME on Functional State of the Neuromotor System during Traumatic Disease of the Spinal Cord

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Functional state of the neuromotor system after administration of a nonspecific NO synthase blocker L-NAME was studied on the model of experimental contusion of the spinal cord. Electron paramagnetic resonance measurements of NO production in the damaged segment of the spinal cord were performed for estimation of the dynamics of intensity of NO production during traumatic disease of the spinal cord and selection of optimal period for L-NAME administration. The status of the neuromotor system was evaluated by stimulation electromyography. Treatment with L-NAME during the acute period of traumatic injury to the spinal cord sharply reduced the intensity of evoked motor responses and more pronounced increase in excitability of peripheral motor structures. The results suggest that NO system is a factor of regulation of the stress-induced and adaptive responses of the body at the early stage of spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrianov VV, Yafarova GG, Tumakaev RF. NO content in rat heart increased in 3 days after spinal cord injury: EPR spectroscopy data. Al’manakh Sovr. Nauki Orazovaniya. 2013(3): 12-13. Russian.

  2. Basnakian AG, Baskov AV, Sokolov NN, Borshenko IA. Apoptosis after traumatic spinal cort injuri: prospects of the pharmacological correction reveiw. Vopr. Med. Khimii. 2000; 46(5):431-443. Russian.

    CAS  Google Scholar 

  3. Gainutdinov KhL, Faisullina RI, Andrianov VV, Gilmutdinova RI, Iyudin VS, Jafarova GG, Sitdikov FG. Nitric oxide level in the rat tissues increases after 30-day hypokinesia: studies by electron paramagnetic resonance (EPR) spectroscopy. Bull. Exp. Biol. Med. 2013;154(5):635-637.

    Article  CAS  PubMed  Google Scholar 

  4. Dmitrenko NP, Holian A. Role of interaction of metabolism paths of formaldehyde and nitrogen oxide in the mechanism of their toxic effect. 2. Toxic effect of nitrogen oxide. Ukr. Biochem. J. 2005;77(5):5-23.

    CAS  Google Scholar 

  5. Lomonosova YuN, Nemirovskaya TL, Shvets VI, Kalamkarov GR, Bugrova AE, Shevchenko TF, Kartashkina NL, Lysenko EA. Protective effect of L-arginine administration on proteins of unloaded m. soleus. Biochemistry (Mosc.). 2011;76(5):571-580.

    Article  CAS  PubMed  Google Scholar 

  6. Malyshev IYu, Manukhina EB. Stress, adaptation, and nitric oxide. Biochemistry (Mosc.). 1998;63(7):840-853.

    CAS  Google Scholar 

  7. Reutov VP. Cycle of NO in mammals. Uspekhi Biol. Khimii. 1995;35:189-228. Russian.

    Google Scholar 

  8. Sitdikova GF, Zefirov AL. Gaseous messengers in the nervous system. Ross. Fiziol. Zh. 2006;92(7):872-882. Russian.

    CAS  Google Scholar 

  9. Bredt DS. Nitric oxide signaling in brain: potentiating the gain with YC-1. Mol. Pharmacol. 2003;63(6):1206-1208.

    Article  CAS  PubMed  Google Scholar 

  10. Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid. Redox Signal. 2009;11(11):2717-2739.

    Article  CAS  PubMed  Google Scholar 

  11. Evangelista AM, Rao VS, Filo AR, Marozkina NV, Doctor A, Jones DR, Gaston B, Guilford WH. Direct regulation of striated muscle myosins by nitric oxide and endogenous nitrosothiols. PLoS One. 2010;5(6):e11209.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hamada Y, Ikata T, Katoh S, Tsuchiya K, Niwa M, Tsutsumishita Y, Fukuzawa K. Roles of nitric oxide in compression injury of rat spinal cord. Free Radic Biol. Med. 1996;20(1):1-9.

    Article  CAS  PubMed  Google Scholar 

  13. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007;87(1):315-424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gotoh T, Mori M. Nitric oxide and endoplasmic reticulum stress. Arterioscler. Thromb. Vasc. Biol. 2006;26(7):1439-1446.

    Article  CAS  PubMed  Google Scholar 

  15. Vanin AF, Huisman A, van Faassen EE. Iron dithiocarbamate as spin trap for nitric oxide detection: pitfalls and successes. Methods Enzymol. 2002;359:27-42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. L. Gainutdinov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 162, No. 9, pp. 295-299, September, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yafarova, G.G., Andrianov, V.V., Yagudin, R.K. et al. Effects of NO Synthase Blocker L-NAME on Functional State of the Neuromotor System during Traumatic Disease of the Spinal Cord. Bull Exp Biol Med 162, 316–319 (2017). https://doi.org/10.1007/s10517-017-3604-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3604-6

Key Words

Navigation