Skip to main content
Log in

Cardiac Body Surface Potentials in Rats with Experimental Pulmonary Hypertension during Ventricular Depolarization

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The spatial and the amplitude-temporal parameters of cardiac body surface potentials were examined in female Wistar rats with experimental pulmonary hypertension during ventricular depolarization. The cardiac body surface potentials have been led from 64 subcutaneous electrodes evenly distributed across the chest surface prior to and 4 weeks after subcutaneous injection of a single dose of monocrotaline (60 mg/kg). Right ventricular hypertrophy and electrophysiological remodeling of the heart developed in rats with experimental pulmonary hypertension in 4 weeks after monocrotaline injection; these changes led to a significant increase in amplitude and temporal characteristics of the cardioelectric field on the body surface in comparison with the initial state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krandycheva VV, Kharin SN, Shmakov DN, Roshchevskaya IM. Cardiac electric field on the body surface in rats with left ventricular hypertrophy caused by experimental renovascular hypertension. Ross. Fiziol. Zh. 2005;91(10):1168-1175. Russian.

  2. Moroshkin VS, Gusarov VG. Possibilities of surface ECG mapping in assessing changes in the atrial depolarization processes in patients with essential hypertension and hypertrophic cardiomyopathy. Kardiologiya. 1997;37(5):71-72. Russian.

  3. Roshchevskaya IM. Cardioelectrical Field of Warm-Blooded Animals and Humans. St. Petersburg, 2008. Russian.

  4. Roshchevsky MP, Arteeva NV, Kolomeets NL, Antonova NA, Kambalov MYu, Shmakov DN, Roshchevskaya IM. The system “CARDIOINFORM” for visualization and analysis of the heart electric field. Med. Akad. Zh. 2005;5(3):74-79. Russian.

  5. Shorokhov YuV, Roshchevskaya IM. Electric field of the heart during ventricular depolarization in ISIAH rats with varying degree of arterial hypertension. Izv. Komi Nauch. Tsentra Ural. Otdel. Ross. Akad. Nauk. 2014(2):46-49. Russian.

  6. Ahearn GS, Tapson VF, Rebeiz A, Greenfield JC Jr. Electrocardiography to define clinical status in primary pulmonary hypertension and pulmonary arterial hypertension secondary to collagen vascular disease. Chest. 2002;122(2):524-527.

    Article  PubMed  Google Scholar 

  7. Benoist D, Stones R, Drinkhill MJ, Benson AP, Yang Z, Cassan C, Gilbert SH, Saint DA, Cazorla O, Steele DS, Bernus O, White E. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 2012;302(11):H2381-H2395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blyth KG, Kinsella J, Hakacova N, McLure LE, Siddiqui AM, Wagner GS, Peacock AJ. Quantitative estimation of right ventricular hypertrophy using ECG criteria in patients with pulmonary hypertension: A comparison with cardiac MRI. Pulm. Circ. 2011;1(4):470-474.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Green LS, Abildskov JA. Clinical applications of body surface potential mapping. Clin. Cardiol. 1995;18(5):245-249.

    Article  CAS  PubMed  Google Scholar 

  10. Hardziyenka M, Campian ME, Bouma BJ, Linnenbank AC, de Bruin-Bon HA, Kloek JJ, van der Wal AC, Baan. Jr, de Beaumont EM, Reesink HJ, de Bakker JM, Bresser P, Tan HL. Right-to-left ventricular diastolic delay in chronic thromboembolic pulmonary hypertension is associated with activation delay and action potential prolongation in right ventricle. Circ. Arrhythm. Electrophysiol. 2009;2(5):555-561.

  11. Hardziyenka M, Campian ME, Verkerk AO, Surie S, van Ginneken AC, Hakim S, Linnenbank AC, de Bruin-Bon HA, Beekman L, van der Plas MN, Remme CA, van Veen TA, Bresser P, de Bakker JM, Tan HL. Electrophysiologic remodeling of the left ventricle in pressure overload-induced right ventricular failure. J. Am. Coll. Cardiol. 2012;59(24):2193-2202.

    Article  CAS  PubMed  Google Scholar 

  12. Kolettis T, Vlahos AP, Louka M, Hatzistergos KE, Baltogiannis GG, Agelaki MM, Mitsi A, Malamou-Mitsi V. Characterisation of a rat model of pulmonary arterial hypertension. Hellenic J. Cardiol. 2007;48(4):206-210.

    PubMed  Google Scholar 

  13. Kozlíková K, Martinka J, Bulas J. ST segment body surface isointegral maps in patients with arterial hypertension. Physiol. Res. 2012;61(1):35-42.

    PubMed  Google Scholar 

  14. Morimatsu Y, Sakashita N, Komohara Y, Ohnishi K, Masuda H, Dahan D, Takeya M, Guibert C, Marthan R. Development and characterization of an animal model of severe pulmonary arterial hypertension. J. Vasc. Res. 2012;49(1):33-42.

    Article  CAS  PubMed  Google Scholar 

  15. Simonneau G, Galiè N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 2004;43(12, Suppl. S):5S-12S.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Suslonova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 162, No. 7, pp. 11-14, July, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslonova, O.V., Smirnova, S.L. & Roshchevskaya, I.M. Cardiac Body Surface Potentials in Rats with Experimental Pulmonary Hypertension during Ventricular Depolarization. Bull Exp Biol Med 162, 7–10 (2016). https://doi.org/10.1007/s10517-016-3531-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-016-3531-y

Key Words

Navigation