Skip to main content
Log in

Modeling of Magnetite Nanoparticles Behavior under Conditions of Microcirculation and Analysis of In Vivo Toxicity

  • BIOTECHNOLOGIES
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The behavior of magnetite nanoparticles was studied in the cell chip microcapillaries. No aggregation of magnetite nanoparticles under conditions of long-term circulation was noted. Biodistribution and toxicity of magnetite nanoparticles (14 nm) and aminated magnetite after their intragastric administration to mice were studied in vivo. According to mass spectrometry and microscopy data, accumulation of nanoparticles occurred mainly in the liver cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Ataç, I. Wagner, R. Horland, R. Lauster, U. Marx, A. G. Tonevitsky, R. P. Azar, and G. Lindner, Skin and hair on-achip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion, Lab. Chip, 13, No. 18, 3555–3561 (2013).

    Article  PubMed  Google Scholar 

  2. S. N. Bhatia and D. E. Ingber, Microfluidic organs-on-chips, Nat. Biotechnol., 32, No. 8, 760–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. A. K. Bordbar, A. A. Rastegari, R. Amiri, E. Ranjbakhsh, M. Abbasi, and A. R. Khosropour, Characterization of modified magnetite nanoparticles for albumin immobilization, Biotechnol. Res. Int., doi: 10.1155/2014/705068 (2014).

  4. B. A. Katsnelson, L. I. Privalova, M. P. Sutunkova, V. B. Gurvich, N. V. Loginova, I. A. Minigalieva, E. P. Kireyeva, V. Y. Shur, E. V. Shishkina, Y. B. Beikin, O. H. Makeyev, and I. E. Valamina, Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview), Int. J. Nanomedicine, 10, 3013–3029 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G. Langley, C. P. Austin, A. K. Balapure, L. S. Birnbaum, J. R. Bucher, J. Fentem, S. C. Fitzpatrick, J. R. Fowle, R. J. Kavlock, H. Kitano, B. A. Lidbury, A. R. Muotri, S. Q. Peng, D. Sakharov, T. Seidle, T. Trez, A. Tonevitsky, A. van de Stolpe, M. Whelan, and C. Willett, Lessons from Toxicology: developing a 21st-century paradigm for medical research, Environ. Health Perspect., 123, No. 11, A268-A272 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. U. Marx, H. Walles, S. Hoffmann, G. Lindner, R. Horland, F. Sonntag, U. Klotzbach, D. Sakharov, A. Ronevitsky, and R. Lauster, Human-on-a-chip developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern. Lab. Anim., 40, No. 5, 235–257 (2012).

    CAS  PubMed  Google Scholar 

  7. E. M. Materne, A. P. Ramme, A. P. Terrasso, M. Serra, P. M. Alves, C. Brito, D. A. Sakharov, A. G. Tonevitsky, R. Lauster, and U. Marx, A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing, J. Biotechnol., 205, 36–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. E. M. Materne, A. G. Tonevitsky, and U. Marx, Chip-based liver equivalents for toxicity testing – organotypicalness versus cost-efficient high throughput, Lab Chip, 13, No. 18, 3481–3495 (2013).

  9. A. Polini, L. Prodanov, N. S. Bhise, V. Manoharan, M. R. Dokmeci, and A. Khademhosseini, Organs-on-a-chip: a new tool for drug discovery, Experts Opin. Drug. Discov., 9, No. 4, 335–352 (2014).

    Article  CAS  Google Scholar 

  10. N. V. Pul’kova, S. A. Tonevitskaya, V. M. Gerasimov, P. G. Rudakovskaya, A. G. Mazhuga, and D. A. Sakharov, Synthesis and optimization of methods for the production of magnetite nanoparticles with different sizes and morphology for biological application, Nanotechnologies in Russia, 10, Nos. 7–8, 570–575 (2015).

  11. S. T. Selvan, T. T. Tan, D. K. Yi, and N. R. Jana, Functional and multifunctional nanoparticles for bioimaging and biosensing, Langmuir, 26, No. 14, 11631–11641 (2010).

  12. N. V. Senyavina, E. V. Trushkin, A. L. Rusanov, V. A. Petrov, A. Yu. Shkurnikov, U. Marx, and D. A. Sakharov, Current technologies for in vitro testing of medicines: use of microbioreactors, Biotechnology in Russia, No. 1, 51–58 (2013).

  13. I. Sergachev, A. Rusanova, E. Trushkin, D. Sakharov, U. Marx, and A. Tonevitsky, Fluorescent optical fiber sensors for cell viability monitoring, Analyst, 138, No. 14, 4066–4069 (2013).

  14. I. Wagner, E. M. Materne, S. Brincker, U. Süssbier, Frädrich, M. Busek, F. Donntag, D. A. Sakharov, E. V. Trushkin, A. G. Tonevitsky, R. Lauster, and U. Marx, A dynamic multi-organchip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture, Lab Chip, 13, No. 18, 3538–3547 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sakharov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 161, No. 1, pp. 133–137, January, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakharov, D.A., Rudakovskaya, P.G., Maltseva, D.V. et al. Modeling of Magnetite Nanoparticles Behavior under Conditions of Microcirculation and Analysis of In Vivo Toxicity. Bull Exp Biol Med 161, 116–119 (2016). https://doi.org/10.1007/s10517-016-3359-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-016-3359-5

Key Words

Navigation