Neuropeptide Cycloprolylglycine Exhibits Neuroprotective Activity after Systemic Administration to Rats with Modeled Incomplete Global Ischemia and in In Vitro Modeled Glutamate Neurotoxicity
- 53 Downloads
We studied cerebroprotective properties of neuropeptide cycloprolylglycine (1 mg/kg) administered intraperitoneally to rats with modeled incomplete global ischemia rats and neuroprotective properties for HT-22 cells under conditions of glutamate toxicity. It was shown that the neuropeptide administered during the postischemic period restored the neurological status of rats by preventing sensorimotor impairments in the limb-placing test and suppression of locomotor activity in the open field test. In in vitro experiments, cycloprolylglycine in concentrations of 10–5-10–8 M exhibited pronounced dose-dependent neuroprotective activity. The results attest to high cerebro- and neuroprotective potential of endogenous peptide cycloprolylglycine.
Key Words
neuropeptide cycloprolylglycine cerebroprotective activity neuroprotective activity incomplete global cerebral ischemia glutamate neurotoxicityPreview
Unable to display preview. Download preview PDF.
References
- 1.T. A. Gudasheva, N. I. Vasilevich, R. U. Ostrovskaya, et al., Khim.-Farm. Zh., 30, No. 9, 12-17 (1996).Google Scholar
- 2.T. A. Gudasheva, M. A. Konstantinopol’skii, R. U. Ostrovskaya, and S. B. Seredenin, Bull. Exp. Biol. Med., 131, No. 5, 547-550 (2001).CrossRefGoogle Scholar
- 3.T. A. Gudasheva, R. U. Ostrovskaya, F. V. Maksimova, et al., Khim.-Farm. Zh., 23, No. 3, 276-281 (1989).Google Scholar
- 4.T. A. Gudasheva, R. U. Ostrovskaya, S. D. Trofimov, et al., Bull. Exp. Biol. Med., 116, No. 10, 411-413 (1999).Google Scholar
- 5.I. V. Zarubina, Peptide Neuroprotection [in Russian], St. Petersburg (2009), pp. 126-185.Google Scholar
- 6.K. N. Kolyasnikova,T. A. Gudasheva, G. A. Nazarova, et al., Eksp. Klin. Farmakol., 75, No. 9, 3-6 (2012).Google Scholar
- 7.R. U. Ostrovskaya, E. A. Gudasheva, and T. A. Tsaplina, Bull. Exp. Biol. Med., 146, No. 9, 310-313 (2008).Google Scholar
- 8.A. H. Ahmed and R. E. Oswald, J. Med. Chem, 53, No. 5, 2197-2203 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
- 9.J. Guan, S. Mathai, P. Harris, et al., Neuropharmacology, 53, No. 6, 749-762 (2007).CrossRefPubMedGoogle Scholar
- 10.T. A. Gudasheva, S. S. Boyko, V. Kh. Akparov, et al., FEBS Lett., 391, No. 1-2, 149-152 (1996).CrossRefPubMedGoogle Scholar
- 11.T. A. Gudasheva, S. S. Boyko, R.U. Ostrovskaya, et al., Eur. J. Drug Metab. Pharmacokinet., 22, No. 3, 245-252 (1997).CrossRefPubMedGoogle Scholar
- 12.M. B. Hansen, S. E. Nielsen, and K. Berg, J. Immunol. Methods., 119, No. 2, 203-210 (1989).CrossRefPubMedGoogle Scholar
- 13.J. Jolkkonen, K. Puurunen, S. Rantakomi, et al., Eur. J. Pharmacol., 400, Nos. 2-3, 211-219 (2000).CrossRefPubMedGoogle Scholar
- 14.H. Jourdi, Y. T. Hsu, M. Zhou, et al., J. Neurosci., 29, No. 27, 8688-8697 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
- 15.M. M. Muley, V. N. Thakare, R. R. Patil, et al., Life Sci., 93, No. 1, 51-57 (2013).CrossRefPubMedGoogle Scholar