Bulletin of Experimental Biology and Medicine

, Volume 160, Issue 5, pp 653–655 | Cite as

Neuropeptide Cycloprolylglycine Exhibits Neuroprotective Activity after Systemic Administration to Rats with Modeled Incomplete Global Ischemia and in In Vitro Modeled Glutamate Neurotoxicity

  • P. Yu. PovarninaEmail author
  • K. N. Kolyasnikova
  • S. V. Nikolaev
  • T. A. Antipova
  • T. A. Gudasheva

We studied cerebroprotective properties of neuropeptide cycloprolylglycine (1 mg/kg) administered intraperitoneally to rats with modeled incomplete global ischemia rats and neuroprotective properties for HT-22 cells under conditions of glutamate toxicity. It was shown that the neuropeptide administered during the postischemic period restored the neurological status of rats by preventing sensorimotor impairments in the limb-placing test and suppression of locomotor activity in the open field test. In in vitro experiments, cycloprolylglycine in concentrations of 10–5-10–8 M exhibited pronounced dose-dependent neuroprotective activity. The results attest to high cerebro- and neuroprotective potential of endogenous peptide cycloprolylglycine.

Key Words

neuropeptide cycloprolylglycine cerebroprotective activity neuroprotective activity incomplete global cerebral ischemia glutamate neurotoxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. A. Gudasheva, N. I. Vasilevich, R. U. Ostrovskaya, et al., Khim.-Farm. Zh., 30, No. 9, 12-17 (1996).Google Scholar
  2. 2.
    T. A. Gudasheva, M. A. Konstantinopol’skii, R. U. Ostrovskaya, and S. B. Seredenin, Bull. Exp. Biol. Med., 131, No. 5, 547-550 (2001).CrossRefGoogle Scholar
  3. 3.
    T. A. Gudasheva, R. U. Ostrovskaya, F. V. Maksimova, et al., Khim.-Farm. Zh., 23, No. 3, 276-281 (1989).Google Scholar
  4. 4.
    T. A. Gudasheva, R. U. Ostrovskaya, S. D. Trofimov, et al., Bull. Exp. Biol. Med., 116, No. 10, 411-413 (1999).Google Scholar
  5. 5.
    I. V. Zarubina, Peptide Neuroprotection [in Russian], St. Petersburg (2009), pp. 126-185.Google Scholar
  6. 6.
    K. N. Kolyasnikova,T. A. Gudasheva, G. A. Nazarova, et al., Eksp. Klin. Farmakol., 75, No. 9, 3-6 (2012).Google Scholar
  7. 7.
    R. U. Ostrovskaya, E. A. Gudasheva, and T. A. Tsaplina, Bull. Exp. Biol. Med., 146, No. 9, 310-313 (2008).Google Scholar
  8. 8.
    A. H. Ahmed and R. E. Oswald, J. Med. Chem, 53, No. 5, 2197-2203 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    J. Guan, S. Mathai, P. Harris, et al., Neuropharmacology, 53, No. 6, 749-762 (2007).CrossRefPubMedGoogle Scholar
  10. 10.
    T. A. Gudasheva, S. S. Boyko, V. Kh. Akparov, et al., FEBS Lett., 391, No. 1-2, 149-152 (1996).CrossRefPubMedGoogle Scholar
  11. 11.
    T. A. Gudasheva, S. S. Boyko, R.U. Ostrovskaya, et al., Eur. J. Drug Metab. Pharmacokinet., 22, No. 3, 245-252 (1997).CrossRefPubMedGoogle Scholar
  12. 12.
    M. B. Hansen, S. E. Nielsen, and K. Berg, J. Immunol. Methods., 119, No. 2, 203-210 (1989).CrossRefPubMedGoogle Scholar
  13. 13.
    J. Jolkkonen, K. Puurunen, S. Rantakomi, et al., Eur. J. Pharmacol., 400, Nos. 2-3, 211-219 (2000).CrossRefPubMedGoogle Scholar
  14. 14.
    H. Jourdi, Y. T. Hsu, M. Zhou, et al., J. Neurosci., 29, No. 27, 8688-8697 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    M. M. Muley, V. N. Thakare, R. R. Patil, et al., Life Sci., 93, No. 1, 51-57 (2013).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P. Yu. Povarnina
    • 1
    Email author
  • K. N. Kolyasnikova
    • 1
  • S. V. Nikolaev
    • 2
  • T. A. Antipova
    • 2
  • T. A. Gudasheva
    • 1
  1. 1.Laboratory of Peptide BioregulatorsMoscowRussia
  2. 2.Laboratory of Pharmacology of NeuroprotectionV. V. Zakusov Research Institute of PharmacologyMoscowRussia

Personalised recommendations