Skip to main content
Log in

Effect of Endothelial Cells on Angiogenic Properties of Multipotent Stromal Cells from the Umbilical Cord during Angiogenesis Modeling in the Basement Membrane Matrix

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Short-term cell culturing on basement membrane matrix is a common and very convenient in vitro model of angiogenesis. We studied the possibility of interaction of multipotent stromal cells from the umbilical cord and Ea.hy926 endothelial cells on this model at the early and late periods of the experiment. Multipotent stromal cells alone and in combination with endothelial cells formed an unstable tubular network. Clusters formed after its disassembling later became the sprouting centers in co-culture of the two cell types, but not in pure culture of multipotent stromal cells. Multipotent stromal cells with CD31+ phenotype constitute the structural basis of newly formed stable 3D capillary-like network. Prolongation of the time of culturing and combination of the two in vitro models of angiogenesis (tubulogenesis and sprouting) allowed more complete assessment of the angiogenic potential of multipotent stromal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Albini, C. Marchisone, F. Del Grosso, et al., Am. J. Pathol., 156, No. 4, 1381-1393 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. B. Annabi, Y. T. Lee, S. Turcotte, et al., Stem Cells, 21, No. 3, 337-347 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. I. Arnaoutova, J. George, H. K. Kleinman, and H. K. Kleinman, Angiogenesis, 12, No. 3, 267-274 (2009).

    Article  PubMed  Google Scholar 

  4. A. Blocki, Y. Wang, M. Koch, et al., Stem Cells Dev., 22, No. 17, 2347-2355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Bouïs, G. A. Hospers, C. Meijer, et al., Angiogenesis, 4, No. 2, 91-102 (2001).

    Article  PubMed  Google Scholar 

  6. A. Burlacu, G. Grigorescu, A. M. Rosca, et al., Stem Cells Dev., 22, No. 4, 643-53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Y. Chen, P. C. Li, Z. L. Li, and X. Wei, Exp. Hematol., 37, No. 5, 629-640 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. M. Choi, H. S. Lee, P. Naidansaren, et al., Int. J. Biochem. Cell Biol., 45, No. 3, 560-570 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. M. Dominici, K. Le Blanc, I. Mueller, et al., Cytotherapy, 8, No. 4, 315-317 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. R. Estrada, N. Li, H. Sarojini, et al., J. Cell. Physiol., 219, No. 3, 563-571 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S.A. Gomes, E. B. Rangel, C. Premer, et al., Proc. Natl Acad. Sci. USA, 110, No. 8, 2834-2839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. Guidolin, G. Albertin, and D. Ribatti, Microscopy: Science, Technology, Applications and Education, Eds. A. Mendez-Vilas, J. Diaz, Badajos (2010), pp. 876-884.

  13. C. S. Hughes, L. M. Postovit, and G. A. Lajoie, Proteomics, 10, No. 9, 1886-1890 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. K. Janeczek Portalska, A. Leferink, N. Groen, et al., PLoS One, 7, No. 10, doi: 10.1371/journal.pone.0046842 (2012).

  15. G. Jin, D. Bausch, T. Knightly, et al., Surgery, 150, No. 3, 429-435 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. H. K. Kleinman, M. L. McGarvey, J. R. Hassell, et al., Biochemistry, 25, No. 2, 312-318 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Y. Kubota, H. K. Kleinman, G. R. Martin, T. J. Lawley, J. Cell Biochem., 107, No. 4, 1589-1598 (1988).

    CAS  Google Scholar 

  18. T. P. Lozito, C. K. Kuo, J. M. Taboas, and R. S. Tuan, J. Cell. Biochem., 107, No. 4, 714-722 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. J. Oswald, S. Boxberger, B. Jorgensen, et al., Stem Cells, 22, No. 3, 377-384 (2004).

    Article  PubMed  Google Scholar 

  20. S. Pacini and I. Petrini, Front. Cell Dev. Biol., Vol. 2, N 20, doi: 10.3389/fcell.2014.00020 (2014).

  21. J. Rouwkema, P. E. Westerweel, J. de Boer, et al., Tissue Eng. Part A, 15, No. 8, 2001-2027 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. Fatkhudinov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 270-278, October, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutyunyan, I.V., Fatkhudinov, T.H., El’chaninov, A.V. et al. Effect of Endothelial Cells on Angiogenic Properties of Multipotent Stromal Cells from the Umbilical Cord during Angiogenesis Modeling in the Basement Membrane Matrix. Bull Exp Biol Med 160, 575–582 (2016). https://doi.org/10.1007/s10517-016-3221-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-016-3221-9

Key Words

Navigation