Bulletin of Experimental Biology and Medicine

, Volume 154, Issue 5, pp 594–596 | Cite as

Analysis of the Application of MMP-9 Inhibitor in Skin Melanoma: Experimental Study

General Pathology and Pathophysiology

Experiment on C57Bl/6 mice with modeled skin melanoma showed that selective inhibition of matrix metalloproteinase-9 increased lifetime and reduced the number of PCNA+ tumor cells and intensity of neoangiogenesis. Inhibition of matrix metalloproteinase-9 prevented tumor necrosis. The results suggest that matrix metalloproteinase-9 is involved not only in the regulation of extracellular matrix degradation, but also in the processes of cell proliferation and neoangiogenesis in skin melanoma. Therefore, this enzyme can be considered as a potential therapeutic target.

Key Words

matrix metalloproteinase-9 skin melanoma neoangiogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B. Aggarwal, M. E. Van Kuiken, L. H. Iyer, et al., Exp. Biol. Med. (Maywood), 234, No. 8, 825–849 (2009).CrossRefGoogle Scholar
  2. 2.
    F. Bianchini, S. D’Allesio, G. Fibbi, et al., Oncol. Rep., 15, No. 3, 709–714 (2006).PubMedGoogle Scholar
  3. 3.
    M. Cheng, B. De, S. Pikul, et al., J. Med. Chem., 43, No. 3, 369–380 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    C. A. Fernandez, M. F. Wszolek, K. R. Loughlin, et al., J. Urol., 182, No. 5, 2188–2944 (2009).PubMedCrossRefGoogle Scholar
  5. 5.
    U. B. Hoffman, J. R. Westphal , G. N. Van Muijen, and D. R. Ruiter, J. Invest. Dermatol., 115, No. 3, 337–344 (2000).CrossRefGoogle Scholar
  6. 6.
    M. Kanjoormana and G. Kuttan, Integr. Cancer Ther., 9, No. 2, 224–235 (2010).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Lempinen, K. Inkinen, H. Wolff, and J. Ahonen, Eur. Surg. Res., 32, No. 3, 169–176 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Liu, D. Min, T. Bolton, et al., Diabetes Care, 32, N 1, 117–119 (2009).PubMedCrossRefGoogle Scholar
  9. 9.
    J. R. Mac Dougall, M. R. Ban, Y. Li, et al., Br. J. Cancer, 80, Nos. 3–4, 504–512 (1999).CrossRefGoogle Scholar
  10. 10.
    H. Mulder, J. Endocrinol., 10, 1530 (2011).Google Scholar
  11. 11.
    B. V. Offersen, M. M. Knap, and M. R. Horsman, Acta. Oncol., 49, No. 8, 1283–1287 (2010).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Sakimoto, J. Shoji, and M. Saws, Jpn. J. Ophthalmol., 47, No. 5, 423–426 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    M. D. Sternlicht and Z. Werb, Annu. Rev. Cell Dev. Biol., 17, 463–516 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    B. Sun, S. Zhang, D. Zhang, X. Yin, et al., Exp. Biol. Med. (Maywood), 232, No. 10, 1300–1307 (2007).CrossRefGoogle Scholar
  15. 15.
    T. Szarvas, F. Vom Dorp, S. Ergun, et al., Nat. Rev. Urol., 8, No. 5, 241–254 (2011).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Prof. V. V. Ivanov Department of Pathological Physiology with the Course of Clinical Pathophysiology, Prof. V. F. Voyno-Yasenetsky Krasnoyarsk State Medical UniversityMoscowRussia

Personalised recommendations