Skip to main content
Log in

Histoenzymology of the Contractile Myocardium in Experimental Pulmonary Stenosis

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Metabolism of сontractile cardiomyocyte in experimental pulmonary stenosis complicated or not complicated by heart failure was studied by histochemical methods. In pulmonary stenosis not complicated by heart failure, intensification of glycolysis, more intense oxidation of free fatty acids and their metabolites, and acceleration of the citric acid cycle were found in the contractile cardiomyocytes. In pulmonary stenosis complicated by heart failure, glycogen content in the myocardium was sharply decreased. The histochemical enzyme profile of contractile cardiomyocytes is similar in pulmonary stenosis with and without heart failure. Comparative analysis of changes occurring in acute increase in afterload of the left or right ventricle suggested that in the latter case, metabolic abnormalities in the contractile cardiomyocytes are relatively unimportant in the pathogenesis of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alberts, D. Bray, J. Lewis, et al., Molecular Biology of the Cell [in Russian], Moscow (1986), Vol. 1, P. 61-110.

    Google Scholar 

  2. A. Lenindger, Basic Biochemistry [in Russian], Moscow (1985).

  3. F. Z. Meerson, Manual of Cardiology [in Russian], Moscow (1982), Vol. 1, P. 112-143.

    Google Scholar 

  4. L. H. Opi, Heart Physiology and Pathophysiology [in Russian], Moscow (1988), Vol. 2, P. 7-23.

    Google Scholar 

  5. M. S. Tverskaya, O. D. Mishnev, V. V. Karpova, et al., Byull. Eksper. Biol., 138, No. 11, 597-600 (2004).

    Google Scholar 

  6. M. S. Tverskaya, O. D. Mishnev, A. P. Raksha, et al., Ibid., 138, No. 12, 693-697 (2004).

    Google Scholar 

  7. M. S. Tverskaya, V. V. Sukhoparova, V. V. Karpova, et al., Ibid., 145, No. 3, 352-356 (2008).

    Google Scholar 

  8. M. S. Tverskaya, V. V. Sukhoparova, V. V. Karpova, et al., Ibid., 151, No. 5, 573-576 (2011).

    Google Scholar 

  9. M. S. Tverskaya, V. V. Sukhoparova, V. V. Karpova, et al., Ibid., 152, No. 7, 117-120 (2011).

    Google Scholar 

  10. C. Depre, M. H. Rider, and L. Hue, Eur. J. Biochem., 258, No. 2, 277-290 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. G. J. Harrison, M. H. van Wijhe, B. de Groot, et al., Am. J. Physiol. Heart Circ. Physiol., 285, No. 2, H883-H890 (2003).

    PubMed  CAS  Google Scholar 

  12. J. S. Ingwall, Cardiovasc. Res., 81, No. 3, 412-419 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Tverskaya.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 154, No. 9, pp. 282-285, September, 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tverskaya, M.S., Sukhoparova, V.V., Karpova, V.V. et al. Histoenzymology of the Contractile Myocardium in Experimental Pulmonary Stenosis. Bull Exp Biol Med 154, 306–308 (2013). https://doi.org/10.1007/s10517-013-1937-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-013-1937-3

Keywords

Navigation