Bulletin of Experimental Biology and Medicine

, Volume 154, Issue 1, pp 68–72 | Cite as

Dependence of Blood Levels of HSP70 and HSP90 on Genotypes of HSP70, GSTT1, and GSTM1 Gene Polymorphism in Individuals Chronically Exposed to Mercury

  • Yu. I. ChernyakEmail author
  • V. B. Itskovich
  • B. K. Baduev
  • G. B. Borovskii

The relationship between blood levels of HSP72, HSP72+HSP73, and HSP90 and genotypes of three polymorphisms of the HSP70 family, HSPA1L (2437T/C) and HSPA1B (2074G/C and 1267A/G) as well as GSTT1 and GSTM1 polymorphisms was studied in 82 men chronically exposed to mercury. Of these, 40 men were exposed to mercury for more than 10 years (group 1) and 42 developed chronic mercuric intoxication (group 2). The groups differed significantly by TT (p=0.004) and TC (p=0.007) genotypes of HSPA1L gene locus 2437T/C. Differences in the heat shock protein content associated with HSP70 gene polymorphism were detected only for HSPA1B gene locus 2074G/C and consisted in reduction of HSP90 (p=0.020) and HSP72 (p=0.056) for GG genotype in group 2 in comparison with group 1. Combination of GSTT1(+)/GSTM1(0/0) genotypes was associated with reduction of the protein levels, while variants including GSTT1(0/0) were associated with a significant elevation thereof.


heat shock proteins HSP70 and HSP90 glutathione-S-transferases genetic polymorphism chronic mercuric intoxication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. L. Lakhman, E. V. Katamanova, T. N. Konstantinova, et al., Ekol. Chel., No. 12, 22–27 (2009).Google Scholar
  2. 2.
    C. B. Ambrosone, C. Sweeney, B. F. Coles, et al., Cancer Res., 61, No. 19, 7130–7135 (2001).PubMedGoogle Scholar
  3. 3.
    C. Gundacker, G. Komarnicki, P. Jagiello, et al., Sci. Total Environ., 385, Nos. 1–3, 37–47 (2007).PubMedCrossRefGoogle Scholar
  4. 4.
    H. H. Kampinga, J. Hageman, M. J. Vos, et al., Cell Stress Chaperones, 14, No. 1, 105–111 (2009).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Kezic, F. Calkoen, M. A. Wenker, et al., Toxicol. Ind. Health, 22, No. 7, 281–289 (2006).PubMedCrossRefGoogle Scholar
  6. 6.
    J. X. Li, B. P. Tang, H. P. Sun, et al., Cell Stress Chaperones, 14, No. 4, 355–362 (2009).PubMedCrossRefGoogle Scholar
  7. 7.
    W. Luo, W. Sun, T. Taldone, et al., Mol. Neurodegener., 5, 24 (2010).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Schroeder, M. Reck, L. E. Lehmann, et al., Intensive Care Med., 26, No. 8, 1139–1143 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    R. Singh, S. Kolvraa, P. Bross, et al., Cell Stress Chaperones, 11, No. 3, 208–215 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    S. E. Temple, K. Y. Cheong, K. G. Ardlie, et al., Intensive Care Med., 30, No. 9, 1761–1767 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    M. J. Vos, J. Hageman, S. Carra, and H. H. Kampinga, Biochemistry, 47, No. 27, 7001–7011 (2008).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. R. Wu, C. K. Wang, C. M. Chen, et al., Hum. Genet., 114, No. 3, 236–241 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    X. Yang, J. Zheng, Y. Bai, et al., Environ. Health Perspect., 115, No. 11, 1573–1577 (2007).PubMedCrossRefGoogle Scholar
  14. 14.
    J. C. Young, I. Moarefi, and F. U. Hartl, J. Cell Biol., 154, No. 2, 267–273 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yu. I. Chernyak
    • 1
    Email author
  • V. B. Itskovich
    • 1
  • B. K. Baduev
    • 2
  • G. B. Borovskii
    • 2
  1. 1.Angara Affiliated Department of East Siberian Center of Human Ecology, Siberian Division of the Russian Academy of Medical SciencesIrkutskRussia
  2. 2.Siberian Institute of Plant Physiology and Biochemistry, Siberian Division of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations