Skip to main content

Advertisement

Log in

Association of FGFR3 and MDM2 Gene Nucleotide Polymorphisms with Bone Tumors

  • Oncology
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Association study of 6 candidate single-nucleotide polymorphisms (rs7921, rs7956547, rs3761243, rs11737764, rs6599400, rs1690916) was carried out in a group of patients with bone tumors of different histological structure (n=68) and control group of normal subjects (n=96). Significant associations of rs6599400 and rs1690916 polymorphisms with disease risk were detected (odds ratio 2.15 [1.06-4.24] and 0.39 [0.19-0.78], respectively). These polymorphisms were located in untranslated genome regions: polymorphism rs6599400 in the 5’ region of fibroblast growth factor-3 receptor gene (FGFR3), rs1690916 in the 3’ region of mouse MDM2 p53-binding protein homolog (MDM2). These data indicated a possible role of hereditary genetic factors in the formation of predisposition to bone sarcomas and confirmed previous findings according to which these genes should be regarded among the most probable factors involved in tumor development, including tumors of the bone and cartilage tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Berenson, P. L. Bergsagel, and N. Munshi, Semin. Hematol., 36, No. 1, Suppl. 3, 9-13 (1999).

  2. J. V. Bovee, L. J. van den Broek, A. M. Cleton-Jansen, and P. C. Hogendoorn, Lab. Invest., 80, No. 12, 1925-1934 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. X. Cai and M. Yang, J. Cancer Res. Clin. Oncol., 138, No. 4, 555-561 (2012).

    Article  PubMed  CAS  Google Scholar 

  4. J. R. Gonzalez, L. Armengol, X. Sole, et al., Bioinformatics, 23, No. 5, 644-645 (2007).

    Article  PubMed  Google Scholar 

  5. M. Hirotsu, T. Setoguchi, Y. Matsunoshita, et al., Brit. J. Cancer, 101, No. 12, 2030-2037 (2009).

    Article  PubMed  CAS  Google Scholar 

  6. J. H. Jang, Biochem. Biophys. Res. Commun., 292, No. 2, 378-382 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. M. Kanehisa and S. Goto, Nucleic Acids Res., 28, No. 1, 27-30 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. J. J. Li, A. E. Friedman-Kien, C. Cockerell, et al., J. Cancer Res. Clin. Oncol., 124, No. 5, 259-264 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. S. Mejia-Guerrero, M. Quejada, N. Gokgoz, et al., Genes Chro mosomes Cancer, 49, No. 6, 518-525 (2010).

    CAS  Google Scholar 

  10. L. Mirabello, K. Yu, S. I. Berndt, et al., BMC Cancer, 11, 209 (2011).

    Article  PubMed  CAS  Google Scholar 

  11. J. M. Varley, Hum. Mutat., 21, No. 3, 313-320 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. I. A. Mierswa, W. Michael, R. Klinkenberg, et al., Proceeding KDD’06: Proceedings of the 12 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ACM, New York (2006), P. 935-940.

  13. J. R. Quinlan, Mach. Learn., 1, No. 1, 81-106 (1986).

    Google Scholar 

  14. The R Development Core Team, A Language and Environment for Statistical Computing. Version 2.11.1.2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Kushlinsky.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 153, No. 6, pp. 850-855, June, 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumov, V.A., Generozov, E.V., Solovyov, Y.N. et al. Association of FGFR3 and MDM2 Gene Nucleotide Polymorphisms with Bone Tumors. Bull Exp Biol Med 153, 870–874 (2012). https://doi.org/10.1007/s10517-012-1847-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-012-1847-9

Key Words

Navigation