Skip to main content
Log in

Detection of Trace Processes in the Networks of Neurons Cultured on Microelectrode Arrays

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We compared the effects of electrical stimulation of primary dissociated neuronal cultures cultured on microelectrode arrays in terms on the expression of c-fos transcriptional factor that is involved in plastic reorganization in neurons. Dissociated hippocampal neurons cultured on multielectrode arrays were exposed to two stimulation protocols: high-frequency and low-frequency stimulations. Expression of c-fos was evaluated using immunofluorescence. Both high-frequency and low-frequency stimulations significantly increased c-fos expression in comparison with non-stimulated control. These findings indicate that c-fos expression can be induced in neuronal cell culture by different types of electrical stimulations and can be used for studying plasticity processes in microphysiological in vitro systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Abramova, K. V. Anokhin, O. N. Dolgov, et al., Vestn. Novykh Med. Tekhnologii, 1, 47–53 (1997).

    Google Scholar 

  2. K. V. Anokhin, Zh. Vyssh. Nerv. Deyat., 47, No. 2, 261–279 (1997).

    CAS  Google Scholar 

  3. T. K. Ahuja, Drug Develop. Res., No. 68, 84–93 (2007).

  4. D. J. Bakkum, Z. C. Chao, and S. M. Potter, J. Neural. Eng., 5, No. 3, 310–323 (2008).

    Article  PubMed  Google Scholar 

  5. D. N. Barry and S. Commins, Rev. Neurosci., 22, No. 2, 131–142 (2011).

    PubMed  Google Scholar 

  6. J. F. Guzowski, J. A. Timlin, B. Roysam, et al., Curr. Opin. Neurobiol., 15, No. 5, 599–606 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. Y. Jimbo, H. P. C. Robinson, and A. Kawana, IEEE Trans. Biomed. Eng., 45, No. 11, 1297–1304 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. G. Kang, J. H. Lee, C. S. Lee, and Y. Nam, Lab. Chip., 9, No. 22, 3236–3242 (2009).

    Article  PubMed  CAS  Google Scholar 

  9. J. Noraberg, F. R. Poulsen, M. Blaabjerg, et al., Curr. Drug Targets CNS Neurol. Disorg., 4, No. 4, 435–452 (2005).

    Article  CAS  Google Scholar 

  10. A. Novellino, P. D’Angelo, L. Cozzi, et al., Comput. Intell. Neurosci. (2007). doi: 10.1155/2007/12755.

  11. B. L. Robinette, J. A. Harrill, W. R. Mundy, and T. J. Shafer, Front. Neuroeng., 4, 1 (2011).

    Article  PubMed  Google Scholar 

  12. G. Shahaf and S. Marom, J. Neurosci., 21, No. 22, 8782–8788 (2001).

    PubMed  CAS  Google Scholar 

  13. K. Varghese, P. Molnar, M. Das, et al., PLoS one, 5, No. 1, e8643 (2010).

    Article  PubMed  Google Scholar 

  14. D. A. Wagenaar, J. Pine, and S. M. Potter, J. Neurosci. Methods, 138, Nos. 1-2, 27–37 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sukhanova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 153, No. 5, pp. 538-541, May, 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhanova, A.L., Mineyeva, O.A., Kiselev, I.I. et al. Detection of Trace Processes in the Networks of Neurons Cultured on Microelectrode Arrays. Bull Exp Biol Med 153, 594–597 (2012). https://doi.org/10.1007/s10517-012-1774-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-012-1774-9

Key Words

Navigation