Skip to main content
Log in

Tumor-Specifi c Contrast Agent Based on Ferric Oxide Superparamagnetic Nanoparticles for Visualization of Gliomas by Magnetic Resonance Tomography

  • Nanotechnologies
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The aim of this study was to create vector superparamagnetic nanoparticles for tumor cell visualization in vivo by magnetic resonance tomography. A method for obtaining superparamagnetic nanoparticles based on ferric oxide with the magnetic nucleus diameter of 12 ± 3 nm coated with BSA and forming stable water dispersions was developed. The structure and size of the nanoparticles were studied by transmissive electron microscopy, dynamic light scattering, and x-ray phase analysis. Their T2 relaxivity was comparable with that of the available commercial analog. Low cytotoxicity of these nanoparticles was demonstrated by MTT test on primary and immortalized cell cultures. The nanoparticles were vectorized by monoclonal antibodies to connexin 43 (Cx43). Specifi c binding of vectorized nanoparticles to C6 glioma Cx43-positive cell membranes was demonstrated. Hence, vector biocompatible nanoparticles with high relaxivity, fit for use as MRT contrast for the diagnosis of poorly differentiated gliomas, were created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Baklaushev, G. M. Yusubalieva, E. B. Tsitrin, et al., Drug Deliv., 18, No. 5, 331-337 (2011).

    Article  PubMed  CAS  Google Scholar 

  2. J. L. Barnhart, N. Kuhnert, D. A. Bakan, and R. N. Berk, Mag. Reson. Imaging, 5, No. 3, 221-231 (1987).

    Article  CAS  Google Scholar 

  3. R. M. Fergusona, K. R. Minard, and K. M. Krishnan, J. Magn. Magn. Mater., 321, No. 10, 1548-1551 (2009).

    Article  Google Scholar 

  4. S. Giannopoulos and A. P. Kyritsis, Oncology, 79, Nos. 3-4, 306-312 (2010).

    Article  PubMed  Google Scholar 

  5. E. J. Goldstein, K. R. Burnett, J. R. Hansell, et al., Physiol. Chem. Phys. Med. NMR, 16, No. 2, 97-104 (1984).

    PubMed  CAS  Google Scholar 

  6. S. Laurent, D. Forge, M. Port, et al., Chem. Rev., 108, No. 6, 2064-2110 (2008).

    Article  PubMed  CAS  Google Scholar 

  7. T. Mosmann, J. Immunol. Methods, 65, Nos. 1-2, 55-63 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. R. Oliveira, C. Christov, J. S. Guillamo, et al., BMC Cell. Biol., 6, No. 1, 7 (2005).

    Article  PubMed  Google Scholar 

  9. X. H. Peng, X. Qian, Mao Hi, et al., Int. J. Nanomedicine, 3, No. 3, 311-321.

  10. N. Prochnow and R. Dermietzel, Histochem. Cell. Biol., 130, No. 1, 71-77 (2008).

    Article  PubMed  CAS  Google Scholar 

  11. J. Riemer, H. H. Hoepken, H. Czerwinska, et al., Anal. Biochem., 331, No. 2, 370-375 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. S. Rizvi, A. H. Asghar, and J. Mehboob, J. Pak. Med. Assoc., 9, 773-775 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Abakumov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 153, No. 1, pp. 101-105, January, 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abakumov, M.A., Grinenko, N.F., Baklaushev, V.P. et al. Tumor-Specifi c Contrast Agent Based on Ferric Oxide Superparamagnetic Nanoparticles for Visualization of Gliomas by Magnetic Resonance Tomography. Bull Exp Biol Med 153, 89–93 (2012). https://doi.org/10.1007/s10517-012-1651-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-012-1651-6

Key Words

Navigation