Skip to main content
Log in

Antifibrotic and Anti-Inflammatory Activity of a Neuroleptic Drug on the Model of Pulmonary Fibrosis

  • GENERAL PATHOLOGY AND PATHOPHYSIOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The effect of course treatment with neuroleptic haloperidol on the inflammatory response and state of the connective tissue in the lungs of C57Bl/6 mice was studied on the model of toxic pulmonary fibrosis induced by intratracheal administration of bleomycin. This neuroleptic decreased the inflammatory response and reduced the growth of the connective tissue in the lungs. The anti-infl ammatory effect of haloperidol is related to a decrease in activity of bone marrow hemopoietic stem cells and committed hemopoietic precursors. The antifibrotic effect of this drug is associated with inhibition of mesenchymal precursor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Gol’dberg, A. M. Dygai, and V. P. Shakhov, Tissue Culture Methods in Hematology [in Russian], Tomsk (1992).

  2. A. M. Dygai, E. G. Skurikhin, T. V. Andreeva, et al., Byull. Eksp. Biol. Med., 152, No. 8, 132-136 (2011).

    Google Scholar 

  3. A. M. Dygai, E. G. Skurikhin, O. V. Pershina, et al., Ibid., 148, No. 4, 400-404 (2010).

    Google Scholar 

  4. Clinical Recommendations. Pulmonology, Ed. A. G. Chuchalin [in Russian], Moscow (2007).

  5. G. A. Merkulov, Course of Pathohistological Technique [in Russian], St. Petersburg (1969).

  6. F. Amenta, A. Ricci, S. K. Tayebati, and D. Zaccheo, Ital. J. Anat. Embryol., 107, No. 3, 145-167 (2002).

    PubMed  CAS  Google Scholar 

  7. M. Bishnoi, K. Chopra, and S. K. Kulkarni, Neurochem. Res., 33, No. 9, 1869-1880 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. P. Bruzzone, V. D’Andrea, C. Motta, and C. Cavallotti, Pulm. Pharmacol. Ther., 15, No. 4, 393-398 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. A. Fabre, J. Marchal-Somme, S. Marchand-Adam, et al., Eur. Respir. J., 32, No. 2, 426-436 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. W. D. Hardie, S. W. Glasser, and J. S. Hagood, Am. J. Pathol., 175, No. 1, 3-16 (2009).

    Article  PubMed  CAS  Google Scholar 

  11. P. Jenner, M. Sheehy, and C. D. Marsden, Br. J. Clin. Pharmacol., 15, Suppl. 2, 277 S-289 S (1983).

    PubMed  Google Scholar 

  12. Y. Kobayashi, A. Ricci, F. Amenta, et al., J. Vasc. Res., 32, No. 3, 200-206 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. M. Königshoff, R. Dumitrascu, S. Udalov, et al., Thorax, 65, No. 11, 949-955 (2010).

    Article  PubMed  Google Scholar 

  14. D. J. Welsh, M. Harnett, M. MacLean, and A. J. Peacock, Am. J. Respir. Crit. Care Med., 170, No. 3, 252-259 (2004).

    Article  PubMed  Google Scholar 

  15. M. S. Wilson and T. A. Wynn, Mucosal Immunol., 2, No. 2, 103-121 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Pershina.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 152, No. 12, pp. 618-622, December, 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dygai, A.M., Skurikhin, E.G., Andreeva, T.V. et al. Antifibrotic and Anti-Inflammatory Activity of a Neuroleptic Drug on the Model of Pulmonary Fibrosis. Bull Exp Biol Med 152, 679–683 (2012). https://doi.org/10.1007/s10517-012-1605-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-012-1605-z

Keywords

Navigation