Advertisement

Effects of CYP1A2 Gene Polymorphisms on Antipyrine CYP1A2-Dependent Metabolism

  • Yu. I. ChernyakEmail author
  • V. B. Itskovich
  • S. I. Kolesnikov
Article

The distribution of two CYP1A2 gene polymorphisms, CYP1A2*F and CYP1A2*D, was studied in a group of 38 men. Antipyrine elimination test was carried out and urinary cotinine was measured. The contribution of these CYP1A2 gene polymorphisms, age, and tobacco smoking to accumulation of three main antipyrine metabolites in the urine was evaluated by regression analysis. The impact of both studied polymorphisms was essential for urinary levels of 3-hydroxymethylantipyrine (metabolite most dependent on cytochrome P-4501A2) and hence, for functional activity of this isoform of the enzyme.

Key Words

genetic polymorphism cytochrome P-4501A2 metabolism antipyrine cotinine 

References

  1. 1.
    O. R. Grek, T. A. Eshkina, and V. I. Sharapov, Eksp. Klin. Farmakol., 62, No. 1, 45–47 (1999).PubMedGoogle Scholar
  2. 2.
    V. A. Ostashevskii, K. E. Gerasimov, I. B. Tsyrlov, and V. S. Rumak, Izv. Rossiisk. Akad. Nauk, Ser. Biology, No. 1, 56–62 (1994).Google Scholar
  3. 3.
    I. A. Rakhmanov, A. V. Semenyuk, N. M. Slyn’ko, et al., Khim. Farm. Zh., No. 3, 351–354 (1989).Google Scholar
  4. 4.
    Yu. I. Chernyak, J. A. Grassman, and S. I. Kolesnikov, The Impact of Persistent Organic Pollutants Exposure on Xenobiotics Biotransformation [in Russian], Novosibirsk (2007).Google Scholar
  5. 5.
    J. A. Carrillo, M. Christensen, S. I. Ramos, et al., Ther. Drug. Monit., 22, No. 4, 409–417 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Chida, T. Yokoi, T. Fukui, et al., Jpn. J. Cancer Res., 90, No. 9, 899–902 (1999).PubMedGoogle Scholar
  7. 7.
    W. G. Chung, J. H. Kang, C. S. Park, et al., Clin. Pharmacol. Ther., 67, No. 3, 258–266 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Doki, M. Homma, K. Kuga, et al., Br. J. Clin. Pharmacol., 68, No. 1, 89–96 (2009).PubMedCrossRefGoogle Scholar
  9. 9.
    R. Ghotbi, M. Christensen, H. K. Roh, et al., Eur. J. Clin. Pharmacol., 63, No. 6, 537–546 (2007).PubMedCrossRefGoogle Scholar
  10. 10.
    G. H. Lambert, L. L. Needham, W. Turner, et al., Environ. Sci. Technol., 40, No. 19, 6176–6180 (2006).PubMedCrossRefGoogle Scholar
  11. 11.
    J. D. Meeker, S. A. Missmer, D. W. Cramer, and R. Hauser, Hum. Reprod., 22, No. 2, 337–345 (2007).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Pavanello, G. Mastrangelo, D. Placidi, et al., Eur. J. Epidemiol., 25, No. 7, 491–500 (2010).PubMedCrossRefGoogle Scholar
  13. 13.
    O. Pelkonen, J. Maenpaa, P. Taavitsainen, et al., Xenobiotica, 28, No. 12, 1203–1253 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Sachse, J. Brockmoller, S. Bauer, and I. Roots, Br. J. Clin. Pharmacol., 47, No. 4, 445–449 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    S. F. Zhou, L. P. Yang, Z. W. Zhou, et al., AAPS J., 11, No. 3, 481–494 (2009).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • Yu. I. Chernyak
    • 1
    Email author
  • V. B. Itskovich
    • 1
  • S. I. Kolesnikov
    • 1
  1. 1.Angarsk Affiliated Department of East Siberian Center of Human Ecologythe Siberian Division of the Russian Academy of Medical SciencesSiberianRussia

Personalised recommendations