Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 150, Issue 3, pp 343–347 | Cite as

Mechanisms of Protective Effect of Dicarbamin on the Blood System in Cytostatic Treatment

  • V. E. Nebolsin
  • V. V. ZhdanovEmail author
  • G. N. Zyuzkov
  • E. V. Udut
  • T. Yu. Khrichkova
  • E. V. Simanina
  • L. A. Stavrova
  • L. A. Miroshnichenko
  • A. V. Chaikovskiy
  • A. M. Dygai
Pharmacology and Toxicology

The effect of Dicarbamin preparation on hemopoiesis suppressed with cyclophosphamide was studied in animal experiments. It was shown that Dicarbamin produced a protective effect on granulocytic hemopoietic steam. This property of the preparation is determined by both protection of immature granulocytic cells at early terms after cytostatic treatment and more active maturation of neutrophils in the bone marrow due to enhanced secretion of humoral factors by elements of hemopoietic environment at late terms of the experiment.

Key Words

Dicarbamin granulocytopoiesis granulocytic precursors cytostatic myelosuppression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. B. Bychkov, N. S. Besova, S. V. Topchieva, et al., Vopr. Onkol., 55, No. 5, 627–633 (2009).PubMedGoogle Scholar
  2. 2.
    M. L. Gershanovich and L. V. Filatova, Ibid., 53, No. 5, 589–595 (2007).Google Scholar
  3. 3.
    E. D. Goldberg, A. M. Dygai, and V. V. Zhdanov, Vestn. Ross. Akad. Med. Nauk., No. 10, 6–10 (1998).Google Scholar
  4. 4.
    E. D. Goldberg, A. M. Dygai, and V. V. Zhdanov, Role of Hemopoiesis-Inducing Microenvironment in the Regulation of Hemopoiesis in Cytostatic Myelosupressions [in Russian], Tomsk (1999).Google Scholar
  5. 5.
    E. D. Goldberg, A. M. Dygai, and V. P. Shakhov, Methods of Tissue Culture in Hematology [in Russian], Tomsk (1992).Google Scholar
  6. 6.
    G. F. Lakin, Biometry [in Russian], Moscow (1973).Google Scholar
  7. 7.
    Antitumor Chemotherapy, Ed. N. I. Perevodchikova [in Russian], Moscow (1996).Google Scholar
  8. 8.
    I. D. Treshchalin, D. A. Bodyagin, E. R. Pereverzeva, et al., Vopr. Onkol., 55, No. 6, 769–744 (2009).PubMedGoogle Scholar
  9. 9.
    A. A. Yarilin, Pat. Fiziol., No. 2, 25–29 (1998).Google Scholar
  10. 10.
    B. I. Lord, H. Gurney, J. Chang, et al., Int. J. Cancer, 50, No. 1, 26–31 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    L. S. Lessin and M. Mittelman, Hematol. Oncol. Clin. North Am., 8, No. 5, 993–1009 (1994).PubMedGoogle Scholar
  12. 12.
    M. A. Moore, K. Welte, S. Gabrilove, and L. M. Souzal, Haematol. Blood Transfus., 31, 210–220 (1987).PubMedGoogle Scholar
  13. 13.
    Y. K. Nguyen, J. Fla. Med. Assoc., 81, No. 7, 467–469 (1994).PubMedGoogle Scholar
  14. 14.
    M. L. Patchen and T. J. MacVittie, Int. J. Immunopharmacol., 7, No. 6, 923–932 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • V. E. Nebolsin
    • 2
  • V. V. Zhdanov
    • 1
    Email author
  • G. N. Zyuzkov
    • 1
  • E. V. Udut
    • 1
  • T. Yu. Khrichkova
    • 1
  • E. V. Simanina
    • 1
  • L. A. Stavrova
    • 1
  • L. A. Miroshnichenko
    • 1
  • A. V. Chaikovskiy
    • 1
  • A. M. Dygai
    • 1
  1. 1.Institute of PharmacologySiberian Division of the Russian Academy of Medical SciencesTomskRussia
  2. 2.Valenta Farm CompanyMoscowRussia

Personalised recommendations