Bulletin of Experimental Biology and Medicine

, Volume 148, Issue 4, pp 697–704 | Cite as

Molecular Genetic and Immunophenotypical Analysis of Pax6 Transcription Factor and Neural Differentiation Markers in Human Fetal Neocortex and Retina In Vivo and In Vitro

  • B. I. Verdiev
  • R. A. Poltavtseva
  • O. V. Podgornyi
  • M. V. Marei
  • R. D. Zinovyeva
  • G. T. Sukhikh
  • M. A. Aleksandrova
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)

Neurotransplantation of various cells, including heterotransplantation of fetal cerebral stem/progenitor cells into the eye is used in experimental studies of central nervous tissue repair during neurodegeneration. For evaluation of this approach, human fetal (weeks 9–20) stem/progenitor cells of the neocortex and retina were studied in vivo and in vitro by quantitative PCR and immunohistochemical staining. Native tissues and cultures were characterized by expression of Pax6 transcription factor (critical for the development of the retina and neocortex) and differentiation markers (nestin, βIII-tubulin, glial fi brillary acidic protein, recoverin, NeuN, neurofi laments, Ki-67). The expression of Pax6 gene in the retina during active neurogenesis was stable and much higher than in the neocortex. In primary cultures, the pattern of Pax6 gene expression is retained and repeats that in native tissues. Immunohistochemical analysis revealed similarity of nestin and βIII-tubulin expression in the neocortex and retina during the early (9–10 weeks) and later (20 weeks) periods and differences in cell phenotypes and their distribution. Culture studies showed that neocortical and retinal stem/progenitor cells are determined and exhibit specifi c differentiation characteristic of the corresponding native tissues. It can be hypothesized that heterotransplantation of the cerebral progenitor cells into the retina of experimental animals can lead to realization of their neurotrophic effect, but not to their functional integration.

Key Words

human neural stem/progenitor cells retina neocortex Pax6 immunohistochemistry cell cultures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Aleksandrova, O. V. Podgornyi, M. V. Marei, et al., Kletochn. Tekhnol. Biol. Med., No. 1, 13–19 (2005).Google Scholar
  2. 2.
    M. A. Aleksandrova, O. V. Podgornyi, R. A. Poltavtseva, et al., Ibid., No. 3, 171–179 (2006).Google Scholar
  3. 3.
    L. Anderson and M. A. Caldwell, Neurobiol. Dis., 27, No. 2, 133–140 (2007).CrossRefPubMedGoogle Scholar
  4. 4.
    K. M. Bishop, J. L. Rubenstein, and D. D. O’Leary, J. Neurosci., 22, No. 17, 7627–7638 (2002).PubMedGoogle Scholar
  5. 5.
    P. Callaerts, G. Halder, and W. J. Gehring, Annu. Rev. Neurosci., 20, 483–532 (1997).CrossRefPubMedGoogle Scholar
  6. 6.
    M. K. Carpenter, X. Cui, Z. Y. Hu, et al., Exp. Neurol., 158, No. 2, 265–278 (1999).CrossRefPubMedGoogle Scholar
  7. 7.
    V. Darsalia, T. Kallur, and Z. Kokaia, Eur. J. Neurosci., 26, No. 3, 605–614 (2007).CrossRefPubMedGoogle Scholar
  8. 8.
    J. de Melo, X. Qiu, G. Du, et al., J. Comp. Neurol., 461, No. 2, 187–204 (2003).CrossRefPubMedGoogle Scholar
  9. 9.
    R. H. Duparc, M. Abdouh, J. David, et al., Dev. Biol., 301, No. 2, 374–387 (2007).CrossRefPubMedGoogle Scholar
  10. 10.
    Z. Ellison-Wright, I. Heyman, I. Frampton, et al., Eur. J. Neurosci., 19, No. 6, 1505–1512 (2004).CrossRefPubMedGoogle Scholar
  11. 11.
    G. Estivill-Torrus, H. Pearson, V. Van Heyningen, et al., Development, 129, No. 2, 455–466 (2002).PubMedGoogle Scholar
  12. 12.
    J. Favor, C. J. Gloeckner, A. Neuhauser-Klaus, et al., Genetics, 179, No. 3, 1345–1355 (2008).CrossRefPubMedGoogle Scholar
  13. 13.
    D. M. Gamm, S. Wang, B. Lu, et al., PLoS One, 2, No. 3, e338 (2007).CrossRefPubMedGoogle Scholar
  14. 14.
    M. Gotz, A. Stoykova, and P. Gruss, Neuron, 21, No. 5, 1031–1044 (1998).CrossRefPubMedGoogle Scholar
  15. 15.
    H. Klassen, D. S. Sakaguchi, and M. J. Young, Prog. Retin. Eye Res., 23, No. 2, 149–181 (2004).CrossRefPubMedGoogle Scholar
  16. 16.
    H. Klassen, B. Ziaeian, I. I. Kirov, et al., J. Neurosci. Res., 77, No. 3, 334–343 (2004).CrossRefPubMedGoogle Scholar
  17. 17.
    R. E. MacLaren, R. A. Pearson, A. MacNeil, et al., Nature, 444, 203–207 (2006).CrossRefPubMedGoogle Scholar
  18. 18.
    M. Manuel, T. Pratt, M. Liu, et al., BMC Dev. Biol., 8, 59 (2008).CrossRefPubMedGoogle Scholar
  19. 19.
    Z. Mo and N. Zecevic, Cereb. Cortex, 18, No. 6, 1455–1465 (2008).CrossRefPubMedGoogle Scholar
  20. 20.
    G. T. Philips, C. N. Stair, H. Young Lee, et al., Dev. Biol., 279, No. 2, 308–321 (2005).CrossRefPubMedGoogle Scholar
  21. 21.
    J. C. Quinn, M. Molinek, B. S. Martynoga, et al., Dev. Biol., 302, No. 1, 50–65 (2007).CrossRefPubMedGoogle Scholar
  22. 22.
    D. S. Sakaguchi, S. J. Van Hoffelen, and M. J. Young, Ann. N. Y. Acad. Sci., 995, 127–139 (2003).CrossRefPubMedGoogle Scholar
  23. 23.
    M. J. Seiler and R. B. Aramant, Brain Res. Dev. Brain Res., 80, Nos. 1–2, 81–95 (1994).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • B. I. Verdiev
    • 1
  • R. A. Poltavtseva
    • 1
  • O. V. Podgornyi
    • 1
  • M. V. Marei
    • 2
  • R. D. Zinovyeva
    • 1
  • G. T. Sukhikh
    • 2
  • M. A. Aleksandrova
    • 1
  1. 1.N. K. Koltsov Institute of Developmental Biology, the Russian Academy of SciencesMoscowRussia
  2. 2.V. I. Kulakov Center of Obstetrics, Gynecology, and PerinatologyFederal Agency for High-Technology Medical CareMoscowRussia

Personalised recommendations