Bulletin of Experimental Biology and Medicine

, Volume 143, Issue 4, pp 431–433 | Cite as

Dipeptide preparation Noopept prevents scopolamine-induced deficit of spatial memory in BALB/c mice

  • A. P. Belnik
  • R. U. Ostrovskaya
  • I. I. Poletaeva
Pharmacology and Toxicology


The effect of original nootropic preparation Noopept on learning and long-term memory was studied with BALB/c mice. Scopolamine (1 mg/kg) impaired long-term memory trace, while Noopept (0.5 mg/kg) had no significant effect. Noopept completely prevented the development of cognitive disorders induced by scopolamine (blockade of muscarinic cholinergic receptors). Our results confirmed the presence of choline-positive effect in dipeptide piracetam analogue Noopept on retrieval of learned skill of finding a submerged platform (spatial memory). We conclude that the effectiveness of this drug should be evaluated in patients with Alzheimer’s disease.

Key Words

water maze spatial memory proline-containing peptides Noopept scopolamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. A. Gudasheva, R. U. Ostrovskaya, S. S. Trofimov, et al., Khim. Farm. Zh., No. 11, 1322–1329 (1985).Google Scholar
  2. 2.
    I. G. Lil’p, F. Z. Bizikoeva, I. I. Poletaeva, et al., Genetika, 124, 666–668 (1997).Google Scholar
  3. 3.
    R. U. Ostrovskaya, Yu. V. Burov, N. I. Smol’nikova, et al., Farmakol. Toksikol., 4, 18–22 (1987).Google Scholar
  4. 4.
    R. U. Ostrovskaya, T. A. Gudasheva, T. A. Voronina, and S. B. Seredenin, Eksper. Klin. Farmakol., No. 5, 66–72 (2002).Google Scholar
  5. 5.
    R. U. Ostrovskaya, T. Kh. Mirzoev, F. A. Firova, et al., Ibid., 64, No. 2, 11–14 (2001).Google Scholar
  6. 6.
    R. T. Bartus, C. Flicker, R. L. Dean, et al., Prog. Brain Res., 70, 345–361 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    G. J. Fricker, J. Peptide Sci., 2, No. 4, 195–211 (1996).Google Scholar
  8. 8.
    C. Giurgea, Actual Pharmacol. (Paris), 25, 115–156 (1972).Google Scholar
  9. 9.
    G. Gron, I. Brandenburg, A. P. Wunderlich, and M. W. Riepe, Neurobiol. Aging, 27, No. 1, 78–87 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    T. A. Gudasheva, T. A. Voronina, R. U. Ostrovskaya, et al., Eur. J. Med. Chem., 31, 151–157 (1996).CrossRefGoogle Scholar
  11. 11.
    D. K. Ingram and T. P. Corfman, Neurosci. Biobehav. Rev., 4, No. 4, 421–435 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Morris, J. Neurosci. Methods, 11, No. 1, 47–60 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    R. U. Ostrovskaya, T. A. Gudasheva, S. Trofimov, et al., Biological Basis of Individual Sensitivity to Psychotropic Drugs, Eds. S. B. Seredenin et al., Edinburgh (1994), pp. 79–91.Google Scholar
  14. 14.
    A. Pelsman, C. Hoyo-Vadillo, T. A. Gudasheva, et al., Int. J. Dev. Neurosci., 21, No. 3, 117–124 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. P. Belnik
    • 1
  • R. U. Ostrovskaya
    • 1
  • I. I. Poletaeva
    • 2
  1. 1.Institute of PharmacologyRussian Academy of Medical SciencesMoscow
  2. 2.Biological FacultyM. V. Lomonosov Moscow State UniversityRussia

Personalised recommendations