Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 143, Issue 2, pp 200–203 | Cite as

Oxidation-induced aggregation of LDL increases their uptake by smooth muscle cells from human aorta

  • O. M. PanasenkoEmail author
  • A. A. Mel’nichenko
  • D. V. Aksenov
  • V. V. Tertov
  • V. V. Kaplun
  • I. A. Sobenin
  • A. N. Orekhov
Biophysics and Biochemistry

Abstract

Oxidative modification of human blood LDL induced by Cu2+, NaOCl, or 2,2-azobis-(2-aminopropane hydrochloride) was followed by their partial aggregation. Separation of oxidized LDL into aggregates and nonaggregated particles showed that they are characterized by a similar degree of oxidative modification. In contrast to nonaggregated particles, LDL aggregates in the same concentration significantly increased cholesterol content in smooth muscle cells from the intact (no involoved in atherosclerosis) human aortic intima. Our results indicate that atherogenicity of LDL oxidized by various factors is mainly associated with the formation of aggregates, but does not depend on the degree of oxidative modification.

Key Words

low-density lipoproteins lipid peroxidation lipoprotein aggregation intracellular cholesterol accumulation atherosclerosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. M. Panasenko, Yu. Arnkhol’d, and V. I. Sergienko, Biol. Membrany, 19, 403–434 (2002).Google Scholar
  2. 2.
    O. M. Panasenko and V. I. Sergienko, Ibid., 10, 341–382 (1993).Google Scholar
  3. 3.
    O. M. Panasenko and V. I. Sergienko, Byull. Eksp. Biol. Med., 131, No. 5, 484–494 (2001).CrossRefGoogle Scholar
  4. 4.
    J. A. Berliner and J. W. Heinecke, Free Rad. Biol. Med., 20, 707–727 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    L. J. Hazel and R. Stocker, Biochem. J., 302, 165–172 (1994).Google Scholar
  6. 6.
    J. W. Heinecke, Coron. Artery Dis., 5, 205–210 (1991).CrossRefGoogle Scholar
  7. 7.
    H. F. Hoff and J. O’Neil, Arterioscler. Tromb., 11, 1209–1222Google Scholar
  8. 8.
    Y. Kawabe, O. Cynshi, Y. Takashima, et al., Arch. Biochem. Biophys., 310, 489–486 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, J. Biol. Chem., 193, 265–275 (1951).PubMedGoogle Scholar
  10. 10.
    R. Maebe, H. Shimasaki, and N. Ueta, Biochim. Biophys. Acta, 1215, 79–86 (1994).Google Scholar
  11. 11.
    A. N. Orekhov, V. V. Tertov, I. D. Novikov, et al., Exp. Mol. Pathol., 42, 117–137 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    V. V. Tertov, V. V. Kaplun, S. N. Dvoryantsev, and A. A. Orekhov, Biochem. Biophys. Res. Commun., 214, 608–613 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    V. V. Tertov, V. V. Kaplun, and A. A. Orekhov, Atherosclerosis, 138, 183–195 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    V. V. Tertov, I. A. Sobenin, and Z. A. Gabbasov, Biochem. Biophys. Res. Commun., 163, 489–494 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    V. V. Tertov, I. A. Sobenin, Z. A. Gabbasov, et al., Circ. Res., 71, 218–228 (1992).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • O. M. Panasenko
    • 1
    • 2
    Email author
  • A. A. Mel’nichenko
    • 1
  • D. V. Aksenov
    • 3
  • V. V. Tertov
    • 2
  • V. V. Kaplun
    • 2
  • I. A. Sobenin
    • 2
    • 3
  • A. N. Orekhov
    • 3
    • 4
  1. 1.Laboratory for Physicochemical Methods of Study and Analysis Institute of Physicochemical MedicineRussian Ministry of HealthRussia
  2. 2.Laboratory for Mechanisms of Atherogenesis, Institute of Experimental CardiologyRussian Cardiology Research and Production Complex, Russian Ministry of HealthRussia
  3. 3.Laboratory of Intercellular Interactions, Institute of General Pathology and PathophysiologyRussian Academy of Medical SciencesRussia
  4. 4.Institute of AtherosclerosisRussian Academy of Natural SciencesMoscow

Personalised recommendations