Skip to main content
Log in

Oxidation-induced aggregation of LDL increases their uptake by smooth muscle cells from human aorta

  • Biophysics and Biochemistry
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

Oxidative modification of human blood LDL induced by Cu2+, NaOCl, or 2,2-azobis-(2-aminopropane hydrochloride) was followed by their partial aggregation. Separation of oxidized LDL into aggregates and nonaggregated particles showed that they are characterized by a similar degree of oxidative modification. In contrast to nonaggregated particles, LDL aggregates in the same concentration significantly increased cholesterol content in smooth muscle cells from the intact (no involoved in atherosclerosis) human aortic intima. Our results indicate that atherogenicity of LDL oxidized by various factors is mainly associated with the formation of aggregates, but does not depend on the degree of oxidative modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Panasenko, Yu. Arnkhol’d, and V. I. Sergienko, Biol. Membrany, 19, 403–434 (2002).

    CAS  Google Scholar 

  2. O. M. Panasenko and V. I. Sergienko, Ibid., 10, 341–382 (1993).

    CAS  Google Scholar 

  3. O. M. Panasenko and V. I. Sergienko, Byull. Eksp. Biol. Med., 131, No. 5, 484–494 (2001).

    Article  Google Scholar 

  4. J. A. Berliner and J. W. Heinecke, Free Rad. Biol. Med., 20, 707–727 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. L. J. Hazel and R. Stocker, Biochem. J., 302, 165–172 (1994).

    Google Scholar 

  6. J. W. Heinecke, Coron. Artery Dis., 5, 205–210 (1991).

    Article  Google Scholar 

  7. H. F. Hoff and J. O’Neil, Arterioscler. Tromb., 11, 1209–1222

  8. Y. Kawabe, O. Cynshi, Y. Takashima, et al., Arch. Biochem. Biophys., 310, 489–486 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, J. Biol. Chem., 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  10. R. Maebe, H. Shimasaki, and N. Ueta, Biochim. Biophys. Acta, 1215, 79–86 (1994).

    Google Scholar 

  11. A. N. Orekhov, V. V. Tertov, I. D. Novikov, et al., Exp. Mol. Pathol., 42, 117–137 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. V. V. Tertov, V. V. Kaplun, S. N. Dvoryantsev, and A. A. Orekhov, Biochem. Biophys. Res. Commun., 214, 608–613 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. V. V. Tertov, V. V. Kaplun, and A. A. Orekhov, Atherosclerosis, 138, 183–195 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. V. V. Tertov, I. A. Sobenin, and Z. A. Gabbasov, Biochem. Biophys. Res. Commun., 163, 489–494 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. V. V. Tertov, I. A. Sobenin, Z. A. Gabbasov, et al., Circ. Res., 71, 218–228 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Panasenko.

Additional information

__________

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 143, No. 2, pp. 159–162, February, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasenko, O.M., Mel’nichenko, A.A., Aksenov, D.V. et al. Oxidation-induced aggregation of LDL increases their uptake by smooth muscle cells from human aorta. Bull Exp Biol Med 143, 200–203 (2007). https://doi.org/10.1007/s10517-007-0050-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-007-0050-x

Key Words

Navigation