Skip to main content
Log in

Proteolysis of Apoprotein B-100 Impairs Its Topography on LDL Surface and Reduces LDL Association Resistance

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

Serine proteinases (trypsin and chymotrypsin) cause destruction of apolipoprotein B-100 on the surface of human blood LDL. Incubation of LDL with these enzymes increases the mean size of LDL particles. Proteolysis of apolipoprotein B-100 induces changes in surface structure, destabilizes LDL particles, and reduces their association resistance. Presumably, this proteolytic modification of LDL with subsequent association of these particles plays an important role in accumulation of cholesterol in the vascular wall and in the development of early stages of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. V. Yanushevskaya, N. V. Valentinova, N. V. Medvedeva, et al., Angiol. Sosud. Khir., 5, Suppl., 241–251 (1999).

    Google Scholar 

  2. F. F. Chao, E. J. Blanchette-Mackie, Y. J. Chen, et al., Am. J. Pathol., 136, 169–179 (1990).

    CAS  PubMed  Google Scholar 

  3. J. R. Guyton and K. F. Klemp, Arterioscler. Thromb., 14, 1305–1314 (1994).

    CAS  PubMed  Google Scholar 

  4. W. Hollander, J. Paddock, and M. Colombo, Exp. Mol. Pathol., 30, 144–171 (1979).

    CAS  PubMed  Google Scholar 

  5. Z. Lojda, M. Ruzickova, E. Havrankova, and V. Synkova, Histochem., 16, 399–405 (1984).

    CAS  Google Scholar 

  6. K. Oorni, M. O. Pentikainen, M. Ala-Korpela, and P. T. Kovanen, J. Lipid Res., 41, 1703–1714 (2000).

    CAS  PubMed  Google Scholar 

  7. M. Piha, L. Lindstedt, and P. T. Kovanen, Biochemistry, 34, 10 120–10 129 (1995).

    Article  CAS  Google Scholar 

  8. U. P. Steinbrecher and M. Lougheed, Arterioscler. Thromb., 12, 608–625 (1992).

    CAS  PubMed  Google Scholar 

  9. A. Tailleux, G. Torpier, B. Caron, et al., J. Lipid Res., 34, 719–728 (1993).

    CAS  PubMed  Google Scholar 

  10. V. V. Tertov, V. V. Kaplun, and A. A. Orekhov, Atherosclerosis, 138, 183–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. V. V. Tertov, A. A. Orekhov, I. A. Sobenin, et al., Circ. Res., 71, 218–228 (1992).

    CAS  PubMed  Google Scholar 

  12. V. V. Tertov, I. A. Sobenin, Z. A. Gabbasov, et al., Lab. Invest., 67, 665–675 (1992).

    CAS  PubMed  Google Scholar 

  13. D. Tirziu, A. Dobrian, C. Tasca, et al., Atherosclerosis, 112, 101–114 (1995).

    CAS  PubMed  Google Scholar 

  14. S. Yla-Herttuala, O. Jaakkola, C. Ehnholm, et al., J. Lipid Res., 29, 563–572 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Panasenko.

Additional information

__________

Translated from Byulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 140, No. 11, pp. 530–534, November, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasenko, O.M., Aksenov, D.V., Mel'nichenko, A.A. et al. Proteolysis of Apoprotein B-100 Impairs Its Topography on LDL Surface and Reduces LDL Association Resistance. Bull Exp Biol Med 140, 521–525 (2005). https://doi.org/10.1007/s10517-006-0013-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-006-0013-7

Key Words

Navigation