Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 140, Issue 5, pp 521–525 | Cite as

Proteolysis of Apoprotein B-100 Impairs Its Topography on LDL Surface and Reduces LDL Association Resistance

  • O. M. PanasenkoEmail author
  • D. V. Aksenov
  • A. A. Mel'nichenko
  • I. V. Suprun
  • E. V. Yanushevskaya
  • T. N. Vlasik
  • I. A. Sobenin
  • A. N. Orekhov
Article

Abstract

Serine proteinases (trypsin and chymotrypsin) cause destruction of apolipoprotein B-100 on the surface of human blood LDL. Incubation of LDL with these enzymes increases the mean size of LDL particles. Proteolysis of apolipoprotein B-100 induces changes in surface structure, destabilizes LDL particles, and reduces their association resistance. Presumably, this proteolytic modification of LDL with subsequent association of these particles plays an important role in accumulation of cholesterol in the vascular wall and in the development of early stages of atherosclerosis.

Key Words

low density lipoproteins trypsin chymotrypsin lipoprotein aggregation atherosclerosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. V. Yanushevskaya, N. V. Valentinova, N. V. Medvedeva, et al., Angiol. Sosud. Khir., 5, Suppl., 241–251 (1999).Google Scholar
  2. 2.
    F. F. Chao, E. J. Blanchette-Mackie, Y. J. Chen, et al., Am. J. Pathol., 136, 169–179 (1990).PubMedGoogle Scholar
  3. 3.
    J. R. Guyton and K. F. Klemp, Arterioscler. Thromb., 14, 1305–1314 (1994).PubMedGoogle Scholar
  4. 4.
    W. Hollander, J. Paddock, and M. Colombo, Exp. Mol. Pathol., 30, 144–171 (1979).PubMedGoogle Scholar
  5. 5.
    Z. Lojda, M. Ruzickova, E. Havrankova, and V. Synkova, Histochem., 16, 399–405 (1984).Google Scholar
  6. 6.
    K. Oorni, M. O. Pentikainen, M. Ala-Korpela, and P. T. Kovanen, J. Lipid Res., 41, 1703–1714 (2000).PubMedGoogle Scholar
  7. 7.
    M. Piha, L. Lindstedt, and P. T. Kovanen, Biochemistry, 34, 10 120–10 129 (1995).CrossRefGoogle Scholar
  8. 8.
    U. P. Steinbrecher and M. Lougheed, Arterioscler. Thromb., 12, 608–625 (1992).PubMedGoogle Scholar
  9. 9.
    A. Tailleux, G. Torpier, B. Caron, et al., J. Lipid Res., 34, 719–728 (1993).PubMedGoogle Scholar
  10. 10.
    V. V. Tertov, V. V. Kaplun, and A. A. Orekhov, Atherosclerosis, 138, 183–195 (1998).CrossRefPubMedGoogle Scholar
  11. 11.
    V. V. Tertov, A. A. Orekhov, I. A. Sobenin, et al., Circ. Res., 71, 218–228 (1992).PubMedGoogle Scholar
  12. 12.
    V. V. Tertov, I. A. Sobenin, Z. A. Gabbasov, et al., Lab. Invest., 67, 665–675 (1992).PubMedGoogle Scholar
  13. 13.
    D. Tirziu, A. Dobrian, C. Tasca, et al., Atherosclerosis, 112, 101–114 (1995).PubMedGoogle Scholar
  14. 14.
    S. Yla-Herttuala, O. Jaakkola, C. Ehnholm, et al., J. Lipid Res., 29, 563–572 (1988).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • O. M. Panasenko
    • 1
    • 3
    Email author
  • D. V. Aksenov
    • 4
  • A. A. Mel'nichenko
    • 3
  • I. V. Suprun
    • 1
  • E. V. Yanushevskaya
    • 2
  • T. N. Vlasik
    • 2
  • I. A. Sobenin
    • 1
    • 4
  • A. N. Orekhov
    • 4
    • 5
  1. 1.Laboratrory of Atherogenesis Mechanisms, Institute of Experimental Cardiology, National Center of CardiologyMinistry of Health of the Russian FederationMoscowRussia
  2. 2.Laboratory of Cell Engineering, Institute of Experimental Cardiology, National Center of CardiologyMinistry of Health of the Russian FederationMoscowRussia
  3. 3.Laboratory of Physico-Chemical Methods of Investigation and Analysis, Institute of Physico-Chemical MedicineMinistry of Health of the Russian FederationMoscowRussia
  4. 4.Laboratory of Cell-Cell Interactions, Institute of General Pathology and PathophysiologyRussian Academy of Medical SciencesMoscowRussia
  5. 5.Institute of AtherosclerosisRussian Academy of Natural SciencesMoscowRussia

Personalised recommendations