Skip to main content
Log in

Relationship between Antitumor Efficiency of Photodynamic Therapy with Photoditasine and Photoenergy Density

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

We studied the effect of photodynamic therapy with photoditasine at different protocols of photoenergy exposure on morphofunctional parameters of M-1 sarcoma. It was found that proliferative activity of tumor cells (evaluated by immunostaining for PCNA) nonlinearly decreases after exposure to 150, 300, and 600 J/cmp2. The main form of cell death during the early period after photodynamic therapy was direct photocoagulation necrosis caused by destruction of sensitized cell structures and ischemic necrosis developing as a result of alteration of vascular network in the tumors. Photoenergy density was not essential for the intensity of induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. S. Romanko, A. F. Tsyb, M. A. Kaplan, and V. V. Popuchiev, Byull. Exp. Biol. Med., 136, No.12, 658–664 (2004).

    Google Scholar 

  2. Yu. F. Stranadko, Clinical Use of Low-Intensive Lasers [in Russian], Moscow (1997), pp. 173–184.

  3. V. V. Yuzhakov, V. Kh. Khavinson, I. M. Kvetnoi, et al., Vopr. Onkol., 47, 328–334 (2001).

    PubMed  Google Scholar 

  4. T. M. Busch, S. M. Hahn, S. M. Evans, and C. J. Koch, Cancer Res., 60, No.10, 2636–2642 (2000).

    PubMed  Google Scholar 

  5. S. Coutier, L. N. Bezdetnaya, T. H. Foster, et al., Radiat. Res., 158, No.3, 339–345 (2002).

    PubMed  Google Scholar 

  6. D. E. Dolmans, A. Kadambi, and J. S. Hill, Cancer Res., 62, No.15, 4289–4294 (2002).

    PubMed  Google Scholar 

  7. T. J. Dougherty, C. J. Gomer, B. W. Henderson, et al., J. Natl. Cancer Inst., 90, No.12, 889–905 (1998).

    Article  PubMed  Google Scholar 

  8. A. Ferrario, K. F. von Tiehl, N. Rucker, et al., Cancer Res., 60, No.15, 4066–4069 (2000).

    PubMed  Google Scholar 

  9. S. O. Gollnick, S. S. Evans, H. Baumann, et al., Br. J. Cancer, 88, No.11, 1772–1779 (2003).

    Article  PubMed  Google Scholar 

  10. M. Korbelik and I. Cecic, Cancer Lett., 137, No.1, 91–98 (1999).

    Article  PubMed  Google Scholar 

  11. M. D. Mason, Rev. Contemp. Pharmacother., 10, No.1, 25–37 (1999).

    Google Scholar 

  12. M. Mori, I. Sakata, T. Hirano, et al., Jpn. J. Cancer Res., 91, No.7, 753–759 (2000).

    PubMed  Google Scholar 

  13. B. W. Pogue, B. Ortel, N. Chen, et al., Cancer Res., 61, No.2, 717–724 (2001).

    PubMed  Google Scholar 

  14. K. Smetana, H. Cajthamlova, D. Grebenova, and Z. Hrkal, J. Photochem. Photobiol. B., 59, No.1–3, 80–86 (2000).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Romanko.

Additional information

__________

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 139, No. 4, pp. 456–461, April, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanko, Y.S., Tsyb, A.F., Kaplan, M.A. et al. Relationship between Antitumor Efficiency of Photodynamic Therapy with Photoditasine and Photoenergy Density. Bull Exp Biol Med 139, 460–464 (2005). https://doi.org/10.1007/s10517-005-0322-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-005-0322-2

Key Words

Navigation