Skip to main content
Log in

The Course of Experimental Myocardial Infarction under Conditions of Suppressed and Enhanced NO Synthesis

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

Experimental myocardial infarction (coronary ligation without drug infusion) reduced heart rate, stroke volume, cardiac output, and blood pressure. Under conditions of blocked NO synthesis, experimental myocardial infarction was accompanied by a transient increase in heart rate, stroke volume, cardiac output, and blood pressure, followed by their decrease throughout the experiment. Experimental myocardial infarction against the background of L-arginine treatment increased all these parameters with their subsequent stabilization at the attained level. Animal survival after administration of L-arginine was 80% vs. 33 in the control, and 22% after administration of L-NAME. It can be hypothesized that L-arginine possesses an intrinsic NO-independent cardioprotective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. F. Vanin, E. B. Manukhina, A. V. Lapshin, and F. Z. Meerson, Byull. Eksp. Biol. Med., 116, No.8, 142–144 (1993).

    Google Scholar 

  2. A. L. Zefirov and A. Kh. Urazaev, Uspekhi Fiziol. Nauk., 30, No.1, 54–72 (1999).

    Google Scholar 

  3. I. A. Latfullin, State of the Hypothalamic-Pituitary-Adrenal System in Experimental Myocardial Infarction [in Russian], Kazan’ (2001), p. 112.

  4. Kh. M. Markov, Uspekhi Fiziol. Nauk., 32, No.3, 49–65 (2001).

    Google Scholar 

  5. R. R. Nigmatullina, F. G. Sitdikov, and R. A. Abzalov, Fiziol. Zh. SSSR, No. 7, 965–969 (1988).

  6. K. Akiyama, P. Suzuki, P. Grant, et al., J. Mol. Cell. Cardiol., 29, 1–9 (1997).

    Article  PubMed  Google Scholar 

  7. P. Ferdinandy and R. Schulz, J. Pharmacol., 138, Nop.4, 532–543 (2003).

    Google Scholar 

  8. U. Ikeda, Y. Maeda, K. Yamamoto, and K. Shimada, Cardiovasc. Res., 56, 86–92 (2002).

    Article  PubMed  Google Scholar 

  9. H. Ishida, K. Ichimori, Y. Hirota, et al., Free Radic. Biol. Med, 20, No.3, 43–50 (1996).

    Article  Google Scholar 

  10. A. Lass, A. Suessenbacher, G. Wolkart, et al., Mol. Pharmacol., 61, No.5, 1081–1088 (2002).

    Article  PubMed  Google Scholar 

  11. E. Mori, N. Haramaki, H. Ikeda, and T. Imaizumi, Cardiovasc. Res., 40, No.1, 113–123 (1998).

    Article  PubMed  Google Scholar 

  12. R. G. Woolfson, V. C. Patel, G. H. Neild, and D. M. Yellon, Circulation, 91, No.5, 1545–1551 (1995).

    PubMed  Google Scholar 

  13. T. Saito, F. Hu, L. Tayara, et al., Am. J. Physiol. Heart. Circ. Physiol., 283, No.1, H339–H345 (2002).

    PubMed  Google Scholar 

  14. M. W. Williams, C. S. Taft, S. Ramnauth, et al., Cardiovasc. Res., 30, No.1, 79–86 (1995).

    Article  PubMed  Google Scholar 

  15. A. J. B. Brady, P. A. Poole-Wilson, S. E. Harding, and J. B. Warren, Am. J. Physiol., 263, H1963–H1966 (1992).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Rakhmatullina.

Additional information

__________

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 139, No. 4, pp. 371–375, April, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakhmatullina, F.F., Nasyrov, A.G. & Zefirov, A.L. The Course of Experimental Myocardial Infarction under Conditions of Suppressed and Enhanced NO Synthesis. Bull Exp Biol Med 139, 384–387 (2005). https://doi.org/10.1007/s10517-005-0300-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-005-0300-8

Key Words

Navigation