An Axiomatic Reconstruction of the Basic Categories in Process Philosophy

Abstract

Although the ideas in Process and Reality are well-recognized by many scientists in various disciplines beyond philosophy, these investigations are focused on the formal interpretation of the notion of space in the context of mereotopology. Indeed, the notion of time is either neglected completely or understood as an abstraction from the four-dimensional existence of enduring objects. However, there is no elucidation of the notion of time beyond this existence. We introduce a monadic second order language to formalize the ultimate principles presupposed to Whitehead’s investigation, i.e., creativity, novelty and advance have been analyzed and reformulated as axioms. The models of the formulated theory are linear process structures, which are a special type of occurrence structures. The model-theoretic aspects of their theory are discussed in the present paper. Our fundamental theorem indicates that the worlds, which ground the knowledge of actual occasions, are ordered linearly and are equal for contemporaneous actual occasions, which implies a condition essential to the being of time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ashby N, Nelson RA (2009) The global positioning system, relativity, and extraterrestrial navigation. Proc IAU 5:22–30. https://doi.org/10.1017/S174392130999010X

    Article  Google Scholar 

  2. Barker S, Dowe P (2005) Endurance is paradoxical. Analysis 65:69–74. https://doi.org/10.1111/j.1467-8284.2005.00526.x

    Article  Google Scholar 

  3. Barwise J, Perry J (1983) Situations and attitudes. A Bradford book. MIT Press, Cambridge

    Google Scholar 

  4. Baumann R, Loebe F, Herre H (2014) Axiomatic theories of the ontology of time in GFO. Appl Ontol 9:171–215

    Article  Google Scholar 

  5. Brennan JG (1974) Whitehead on time and endurance. South J Philos 12:117–126

    Article  Google Scholar 

  6. Brentano F (1976) Philosophische Untersuchungen zu Raum, Zeit und Kontinuum, 1. Aufl. Philosophische Bibliothek, vol 293. Meiner, Hamburg

  7. Casati R, Varzi AC (1999) Parts and places: the structures of spatial representation, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  8. Clarke BL (1981) A calculus of individuals based on “connection”. Notre Dame J Form Logic 22:204–218. https://doi.org/10.1305/ndjfl/1093883455

    Article  Google Scholar 

  9. Clements K, Dowker F, Wallden P (2017) Physical Logic. In: Cooper SB, Soskova MI (eds) The incomputable. Springer, Cham

    Google Scholar 

  10. de Laguna T (1922) Point, line, and surface, as sets of solids. J Philos 19:449. https://doi.org/10.2307/2939504

    Article  Google Scholar 

  11. Dedekind R (2012) Was sind und was sollen die Zahlen? Cambridge library collection. Cambridge University Press, Cambridge

    Google Scholar 

  12. Dowker F (2014) The birth of spacetime atoms as the passage of time. Ann N Y Acad Sci 1326:18–25. https://doi.org/10.1111/nyas.12542

    Article  Google Scholar 

  13. Einstein A (2001) Über die spezielle und die allgemeine Relativitätstheorie, 23. Aufl., Nachdr. 2001. Springer, Berlin

  14. Epperson M, Zafiris E (2013) Foundations of relational realism: a topological approach to quantum mechanics and the philosophy of nature. Lexington Books, Lanham

    Google Scholar 

  15. Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Springer, Berlin

    Google Scholar 

  16. Gibbons G, Will CM (2007) On the multiple deaths of Whitehead’s theory of gravity. Stud Hist Philos Sci Part B Stud Hist Philos Mod Phys 39:41–61

    Article  Google Scholar 

  17. Griffin DR (2001) Time in process philosophy. KronoScope 1:75–99. https://doi.org/10.1163/156852401760060937

    Article  Google Scholar 

  18. Guarino N, Welty C (2000) A formal ontology of properties. In: Dieng R (ed) Knowledge engineering and knowledge management methods, models, and tools: 12th international conference, EKAW 2000 Juan-les-Pins, France, October 26, 2000 Proceedings, vol 1937. Springer, Berlin, pp 97–112

  19. Hartmann N (1935) Zur Grundlegung der Ontologie. de Gruyter, Berlin

    Google Scholar 

  20. Herre H (2010) General formal ontology (GFO): a foundational ontology for conceptual modelling. In: Seibt J, Kameas A, Healy M, Poli R (eds) Theory and applications of ontology. Springer, Dordrecht, pp 297–345

    Google Scholar 

  21. Herre H (2016) GFO-data: towards an ontological foundation of an integrated data semantics. In: Fuchs-Kittowski F, Kriesel W (eds) Informatik und Gesellschaft: Festschrift zum 80. Geburtstag von Klaus Fuchs-Kittowski, 1st edn. Internationaler Verlag der Wissenschaften, Frankfurt am Main

    Google Scholar 

  22. Herre H, Loebe F (2005) A meta-ontological architecture for foundational ontologies. In: Meersman R, Tari Z (eds) On the move to meaningful internet systems 2005: CoopIS, DOA, and ODBASE: proceedings of the OTM confederated international conferences, CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus, Oct 31–Nov 4, 2005 (Part II), vol 3761. Springer, Berlin, pp 1398–1415

  23. Herre H, Heller B, Burek P, Hoehndorf R, Loebe F, Michalek H (2006) General formal ontology (GFO): a foundational ontology integrating objects and processes. Part I: Basic Principles (Version 1.0). Onto-Med Report, Leipzig

  24. Läuchli H, Leonard J (1966) On the elementary theory of linear order. Fundam Math 59:109–116

    Article  Google Scholar 

  25. Leibniz GW (1879) Die kleineren, philosophisch wichtigeren Schriften. Philosophische Bibliothek, Dürr, Leipzig

    Google Scholar 

  26. Leibniz GW (1998) Monadologie: Französisch/deutsch. Reclams Universal-Bibliothek, Nr. 7853. Reclam, Stuttgart

  27. Levi R (1927) Théorie de l’action universelle et discontinue. Journal de Physique et le Radium 8:182–198. https://doi.org/10.1051/jphysrad:0192700804018200

    Article  Google Scholar 

  28. Lewis DK (1991) Parts of classes, 1st edn. Blackwell, Oxford

    Google Scholar 

  29. Lindner A (1994) Grundkurs Theoretische Physik. Teubner-Studienbücher : Physik. Teubner, Stuttgart

    Google Scholar 

  30. Maldacena J, Susskind L (2013) Cool horizons for entangled black holes. Fortschr Phys 61:781–811. https://doi.org/10.1002/prop.201300020

    Article  Google Scholar 

  31. Mays W (1972) Whitehead and the philosophy of time. In: Fraser JT, Haber FC, Müller GH (eds) The study of time: proceedings of the first conference of the international society for the study of time Oberwolfach (Black Forest)—West Germany. Springer, Berlin, pp 354–369

  32. McTaggart JE (1908) The unreality of time. Mind XVII:457–474. https://doi.org/10.1093/mind/xvii.4.457

    Article  Google Scholar 

  33. Michelson AA, Morley EW (1887) On the relative motion of the Earth and the luminiferous ether. Am J Sci s3-34:333–345. https://doi.org/10.2475/ajs.s3-34.203.333

    Article  Google Scholar 

  34. Minkowski H, Gutzmer A (2007) Raum und Zeit: Vortrag, gehalten auf der 80. Naturforscher-Versammlung zu Köln am 21. September 1908. Teubner; Wikimedia Deutschland e. V, Leipzig, Frankfurt am Main

  35. Nelson RA (1999) The global positioning system: a national resource. Via Satellite

  36. Newton I (1999) The principia: mathematical principles of natural philosophy. University of California Press, Berkeley

    Google Scholar 

  37. Popper KR (2005) Logik der Forschung, 11th edn. Gesammelte Werke. Mohr Siebeck, Tübingen

    Google Scholar 

  38. Rescher N, Oppenheim P (1955) Logical analysis of gestalt concepts. Br J Philos Sci VI:89–106. https://doi.org/10.1093/bjps/vi.22.89

    Article  Google Scholar 

  39. Ridder L (2002) Mereologie: ein Beitrag zur Ontologie und Erkenntnistheorie. Philosophische Abhandlungen. Vittorio Klostermann, Frankfurt am Main

    Google Scholar 

  40. Schwer SR (2008) Whitehead’s construction of time: a linguistic approach. In: Weber M (ed) Handbook of Whiteheadian process thought. de Gruyter, Berlin, pp 55–66

    Google Scholar 

  41. Shapiro S (2000) Foundations without foundationalism: a case for second-order logic, vol 17. Oxford logic guides. Clarendon Press, Oxford

    Google Scholar 

  42. Siemoleit S, Herre H (2016) A Whiteheadian approach to data and knowledge. In: Boeker M, Herre H, Jansen L, Loebe F, Schober D (eds) Workshop on ontologies and data in life sciences, vol 1692, Aachen, F1–F6

  43. Simons P (2000) Parts: a study in ontology. Oxford University Press, Oxford

    Google Scholar 

  44. Teixeira MT (2011) The stream of consciousness and the Epochal theory of time. Eur J Pragmat Am Philos 3 (1):131–145

    Google Scholar 

  45. Unger RM, Smolin L (2015) The singular universe and the reality of time: a proposal in natural philosophy, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  46. Vakarelov D (2010) Dynamic mereotopology: a point-free theory of changing regions. I. Stable and unstable mereotopological relations. Fundam Inform 100:159–180

    Article  Google Scholar 

  47. von Wachter D (2000) Dinge und Eigenschaften: Versuch zur Ontologie. Zugl.: Hamburg, Univ., FB Phil. u. Sozialwiss., Diss., 1997. Neue ontologische Forschung, vol 1. Röll, Dettelbach

  48. Wahlberg TH (2008) Can I be an instantaneous stage and yet persist through time? Int Ontol Metaphys 9:235–239. https://doi.org/10.1007/s12133-008-0036-9

    Article  Google Scholar 

  49. Whitehead AN (1920) The concept of nature, vol 1919. The Tarner lectures. Cambridge University Press, Cambridge

    Google Scholar 

  50. Whitehead AN (1929) Process and reality: an essay in cosmology. Gifford lectures. Cambridge University Press, Cambridge

    Google Scholar 

  51. Whitehead AN (2010) The principle of relativity with applications to physical science. Kessinger Publishing’s rare reprints. Kessinger Publ, Whitefish

    Google Scholar 

  52. Wiehl R (1975) Time and timelessness in the philosophy of A. N. Whitehead. Process Stud 5:3–30

    Article  Google Scholar 

  53. Wilczek F (2012) Quantum time crystals. Phys Rev Lett 109:160401. https://doi.org/10.1103/PhysRevLett.109.160401

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sebastian Siemoleit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siemoleit, S., Herre, H. An Axiomatic Reconstruction of the Basic Categories in Process Philosophy. Axiomathes 30, 107–147 (2020). https://doi.org/10.1007/s10516-019-09450-1

Download citation

Keywords

  • Artificial intelligence
  • Axiomatic reconstructions
  • Changing knowledge
  • Formal ontology
  • Philosophy of time
  • Process philosophy