Axiomathes

, Volume 26, Issue 3, pp 279–311 | Cite as

Decompositional Equivalence: A Fundamental Symmetry Underlying Quantum Theory

Original Paper

Abstract

Decompositional equivalence is the principle that there is no preferred decomposition of the universe into subsystems. It is shown here, by using a simple thought experiment, that quantum theory follows from decompositional equivalence together with Landauer’s principle. This demonstration raises within physics a question previously left to psychology: how do human—or any—observers identify or agree about what constitutes a “system of interest”?

Keywords

Black box Cybernetics Information Measurement Objectivity Observer 

References

  1. Aerts D, Gabora L, Sozzo S (2013) Concepts and their dynamics: a quantum-theoretic modeling of human thought. Top Cogn Sci 5:737–772Google Scholar
  2. Anders J, Shabbir S, Hilt S, Lutz E (2006) Landauer’s principle in the quantum domain. Electron Proc Theor Comput Sci 26:13–18CrossRefGoogle Scholar
  3. Arndt M, Nairz O, Vos-Andreae J, Keller C, van der Zouw G, Zeilinger A (1999) Wave-particle duality of C\(_{60}\) molecules. Nature 401:680–682CrossRefGoogle Scholar
  4. Ashby WR (1956) An introduction to cybernetics. Chapman and Hall, LondonCrossRefGoogle Scholar
  5. Bacciagaluppi G, Valentini A (2009) Quantum theory at the crossroads: reconsidering the 1927 Solvay conference. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Bastin T (ed) (1971) Quantum theory and beyond. Cambridge University Press, Cambridge (re-published by Cambridge University Press, Cambridge, p 2009)Google Scholar
  7. Bennett CH (2003) Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud Hist Philos Modern Phys 34:501–510CrossRefGoogle Scholar
  8. Bub J, Pitowsky I (2010) Two dogmas about quantum mechanics. In: Saunders S, Barrett J, Kent A, Wallace D (eds) Many worlds? Everett, quantum theory and reality. Oxford University Press, Oxford, pp 433–459CrossRefGoogle Scholar
  9. Bunge M (1956) Survey of the interpretations of quantum mechanics. Am J Phys 24:272–286CrossRefGoogle Scholar
  10. Butterfield J (2011) Emergence, reduction and supervenience: a varied landscape. Found Phys 41:920–959CrossRefGoogle Scholar
  11. Cabello A (2015) Interpretations of quantum theory: a map of madness. Preprint arXiv:1509.04711v1 [quant-ph]
  12. DeWitt BS (1970) Quantum mechanics and reality: could the solution to the dilemma of indeterminism be a universe in which all possible outcomes of an experiment actually occur? Phys Today 23(9):30–40CrossRefGoogle Scholar
  13. Eibenberger S, Gerlich S, Arndt M, Mayor M, Tüxen J (2013) Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. Phys Chem Chem Phys 15:14696–14700CrossRefGoogle Scholar
  14. Everett H III (1957) “Relative state” formulation of quantum mechanics. Rev Mod Phys 29:454–462CrossRefGoogle Scholar
  15. Feynman RP, Leighton RB, Sands M (1965) Feynman lectures on physics. Addison-Wesley, New YorkGoogle Scholar
  16. Fields C (2011) Classical system boundaries cannot be determined within quantum Darwinism. Phys Essays 24:518–522CrossRefGoogle Scholar
  17. Fields C (2012) The very same thing: extending the object-token concept to incorporate causal constraints on individual identity. Adv Cogn Psychol 8:234–247CrossRefGoogle Scholar
  18. Fields C (2013a) Bell’s theorem from Moore’s theorem. Int J Gen Syst 42:376–385CrossRefGoogle Scholar
  19. Fields C (2013b) The principle of persistence, Leibniz’s Law and the computational task of object identification. Hum Dev 56:147–166CrossRefGoogle Scholar
  20. Fields C (2014a) On the Ollivier–Poulin–Zurek definition of objectivity. Axiomathes 24:137–156CrossRefGoogle Scholar
  21. Fields C (2014b) Motion, identity and the bias toward agency. Front Human Neurosci 8:Article # 597Google Scholar
  22. Fuchs CA (2002) Quantum mechanics as quantum information (and only a little more). Preprint arXiv:quant-ph/0205039v1
  23. Fuchs CA (2010) QBism: the perimeter of quantum Bayesianism. Preprint arXiv:1003.5209v1 [quant-ph]
  24. Grinbaum A (2015) How device-independent approaches change the meaning of physics. Preprint arXiv:1512.01035v1
  25. Ghirardi GC, Rimini A, Weber T (1986) Unified dynamics for microscopic and macroscopic systems. Phys Rev D 34:470–491CrossRefGoogle Scholar
  26. Hartle JB (2011) The quasiclassical realms of this quantum universe. Found Phys 41:982–1006CrossRefGoogle Scholar
  27. Healey R (2012) Quantum theory: a pragmatist approach. Br J Philos Sci 63:729–771CrossRefGoogle Scholar
  28. Jauch JM (1968) Foundations of quantum mechanics. Addison-Wesley, ReadingGoogle Scholar
  29. Jennings D, Leifer M (2016) No return to classical reality. Contemp Phys 57(1):60–82CrossRefGoogle Scholar
  30. Kastner R (2014) ‘Einselection’ of pointer observables: the new H-theorem? Stud Hist Philos Modern Phys 48:56–58CrossRefGoogle Scholar
  31. Koenderink J (2014) The all-seeing eye? Perception 43(1):1–6CrossRefGoogle Scholar
  32. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5(3):183–195CrossRefGoogle Scholar
  33. Landauer R (1999) Information is a physical entity. Phys A 263:63–67CrossRefGoogle Scholar
  34. Landsman NP (2007) Between classical and quantum. In: Butterfield J, Earman J (eds) Handbook of the philosophy of science: philosophy of physics. Elsevier, Amsterdam, pp 417–553Google Scholar
  35. Leifer MS (2014) Is the quantum state real? An extended review of \(\psi\)-ontology theorems. Quanta 3:67–155CrossRefGoogle Scholar
  36. Moore EF (1956) Gedankenexperiments on sequential machines. In: Shannon CW, McCarthy J (eds) Automata Stud. Princeton University Press, Princeton, pp 129–155Google Scholar
  37. Nagel E (1961) The structure of science: problems in the logic of scientific explanation. Harcourt, Brace & World, New YorkGoogle Scholar
  38. Nielsen MA, Chaung IL (2000) Quantum information and quantum computation. Cambridge University Press, CambridgeGoogle Scholar
  39. Norsen T, Nelson S (2013) Yet another snapshot of foundational attitudes toward quantum mechanics. Preprint arXiv:1306.4646v2 [quant-ph]
  40. Ollivier H, Poulin D, Zurek WH (2004) Objective properties from subjective quantum states: environment as a witness. Phys Rev Lett 93:220401CrossRefGoogle Scholar
  41. Ollivier H, Poulin D, Zurek WH (2005) Environment as a witness: selective proliferation of information and emergence of objectivity in a quantum universe. Phys Rev A 72:042113CrossRefGoogle Scholar
  42. Penrose R (1996) On gravity’s role in quantum state reduction. Gen Relativ Gravit 28:581–600CrossRefGoogle Scholar
  43. Peres A, Fuchs C (2000) Quantum theory needs no “interpretation”. Phys Today 53(3):70–73CrossRefGoogle Scholar
  44. Peres A, Terno DR (2004) Quantum information and relativity theory. Rev Mod Phys 76:93–123CrossRefGoogle Scholar
  45. Pothos EM, Busemeyer JM (2013) Can quantum probability provide a new direction for cognitive modeling? Behav Brain Sci 36:255–327CrossRefGoogle Scholar
  46. Rovelli C (1996) Relational quantum mechanics. Int J Theor Phys 35:1637–1678CrossRefGoogle Scholar
  47. Rovelli C (2014) Why do we remember the past and not the future? The ‘time oriented coarse graining’ hypothesis. Preprint arXiv:1407.3384v2
  48. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423CrossRefGoogle Scholar
  49. Schlosshauer M (2007) Decoherence and the quantum to classical transition. Springer, BerlinGoogle Scholar
  50. Schlosshauer M, Kofler J, Zeilinger A (2013) A snapshot of foundational attitudes toward quantum mechanics. Stud Hist Philos Modern Phys 44:222–230CrossRefGoogle Scholar
  51. Spekkens RW (2007) Evidence for the epistemic view of quantum states: a toy theory. Phys Rev A 75:032110CrossRefGoogle Scholar
  52. Sommer C (2013) Another survey of foundational attitudes towards quantum mechanics. Preprint arXiv:1303.2719v1 [quant-ph]
  53. Tegmark M (2000) Importance of quantum decoherence in brain processes. Phys Rev E 61:4194–4206CrossRefGoogle Scholar
  54. Tegmark M (2012) How unitary cosmology generalizes thermodynamics and solves the inflationary entropy problem. Phys Rev D 85:123517CrossRefGoogle Scholar
  55. von Neumann J (1932) Mathematical foundations of quantum theory. Springer, BerlinGoogle Scholar
  56. Wallace D (2008) Philosophy of quantum mechanics. In: Rickles D (ed) The Ashgate companion to contemporary philosophy of physics. Ashgate, Aldershot, pp 16–98Google Scholar
  57. Wang Q, Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1994) Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science 266:422–424CrossRefGoogle Scholar
  58. Weinberg S (2012) Collapse of the state vector. Phys Rev A 85:062116CrossRefGoogle Scholar
  59. Wigner EP (1962) Remarks on the mind-body question. In: Good IJ (ed) The scientist speculates. Basic Books, New York, pp 284–301Google Scholar
  60. Zeh D (1970) On the interpretation of measurement in quantum theory. Found Phys 1:69–76CrossRefGoogle Scholar
  61. Zurek WH (2003) Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys 75:715–775CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.SonomaUSA

Personalised recommendations