Axiomathes

, Volume 24, Issue 1, pp 137–156 | Cite as

On the Ollivier–Poulin–Zurek Definition of Objectivity

Original Paper

Abstract

The Ollivier–Poulin–Zurek definition of objectivity provides a philosophical basis for the environment as witness formulation of decoherence theory and hence for quantum Darwinism. It is shown that no account of the reference of the key terms in this definition can be given that does not render the definition inapplicable within quantum theory. It is argued that this is not the fault of the language used, but of the assumption that the laws of physics are independent of Hilbert-space decomposition. All evidence suggests that this latter assumption is true. If it is, decoherence cannot explain the emergence of classicality.

Keywords

Decoherence Quantum Darwinism Classical information Environment as witness Decomposition into systems Semantics 

References

  1. Bacciagaluppi G (2007) The role of decoherence in quantum mechanics. Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/qm-decoherence/ (accessed March 16, 2009)
  2. Blume-Kohout R, Zurek WH (2006) Quantum Darwinism: entanglement, branches, and the emergent classicality of redundantly stored quantum information. Phys Rev A 73:062310 arXiv:quant-ph/0505031v2Google Scholar
  3. Bohr N (1928) The quantum postulate and the recent developments of atomic theory. Nature 121:580–590CrossRefGoogle Scholar
  4. Bousso R, Susskind L (2011) The multiverse interpretation of quantum mechanics. Preprint arXiv:1105.3796v1 [hep-th]Google Scholar
  5. Brune M, Hagley E, Dreyer J, Maître X, Maali A, Wunderlich C, Raimond JM, Haroche S (1996) Observing the progressive decoherence of the “meter” in a quantum measurement. Phys Rev Lett 77:4887–4890CrossRefGoogle Scholar
  6. Chomsky N (1965) Cartesian linguistics. Harper and Row, New YorkGoogle Scholar
  7. Everett H III (1957) ‘Relative state’ formulation of quantum mechanics. Rev Mod Phys 29:454–462CrossRefGoogle Scholar
  8. Fields C (2010) Quantum Darwinism requires an extra-theoretical assumption of encoding redundancy. Int J Theor Phys 49:2523–2527, arXiv:1003.5136v2 [quant-ph]Google Scholar
  9. Fields C (2011) Classical system boundaries cannot be determined within quantum Darwinism. Phys Essays 24:518–522, arXiv:1008.0283v4 [quant-ph]Google Scholar
  10. Fields C (2012a) If physics is an information science, what is an observer? Information 3:92–123, arXiv:1108.4865v2 [quant-ph]Google Scholar
  11. Fields C (2012b) A model-theoretic interpretation of environment-induced superselection. Int J Gen Syst 41:847–859, arXiv:1202.1019v2 [quant-ph]Google Scholar
  12. Fields C (2012c) Implementation of classical communication in a quantum world. Information 3:809–831, arXiv:1206.4247v3 [quant-ph]Google Scholar
  13. Fields C (2013) Bell’s theorem from Moore’s theorem. Int J Gen Syst 42:376–385, arXiv:1201.3672v6 [quant-ph]Google Scholar
  14. Fuchs C (2010) QBism: the perimeter of quantum Bayesianism. Preprint arXiv:1003.5209v1 [quant-ph]Google Scholar
  15. Griffiths RB (2002) Consistent quantum theory. Cambridge University Press, New York, http://quantum.phys.cmu.edu/CQT/ (accessed August 5, 2011).
  16. Griffiths RB (2007) Types of quantum information. Phys Rev 76:062320, arXiv:0707.3752v2 [quant-ph]Google Scholar
  17. Griffiths RB (2011) A consistent quantum ontology. Preprint arXiv:1105.3932v1 [quant-ph]Google Scholar
  18. Hartle JB (2008) The quasiclassical realms of this quantum universe. Found Phys 41:982–1006, arXiv:0806.3776v5 [quant-ph]Google Scholar
  19. Joos E, Zeh D (1985) The emergence of classical properties through interaction with the environment. Z Phys B Condens Matter 59:223–243CrossRefGoogle Scholar
  20. Kiefer C, Queisser F, Starobinsky A (2011) Cosmological constant from decoherence. Class Quantum Gravity 28: 125022, arXiv:1010.5331v2 [astro-ph.CO]Google Scholar
  21. Landsman NP (2007) Between classical and quantum. In: Butterfield J, Earman J (eds) Handbook of the philosophy of science: philosophy of physics. Elsevier, Amsterdam, pp 417–553, arXiv:quant-ph/0506082v2Google Scholar
  22. Marr D (1982) Vision. Freeman, New YorkGoogle Scholar
  23. Martineau P (2006) On the decoherence of primordial fluctuations during inflation. Class Quantum Gravity 24:5817–5834, arXiv:astro-ph/0601.134v1Google Scholar
  24. Moore EF (1956) Gedankenexperiments on sequential machines. In: Shannon CW, McCarthy J (eds) Autonoma studies, Princeton University Press, Princeton, pp 129–155Google Scholar
  25. Ollivier H, Poulin D, Zurek WH (2004) Objective properties from subjective quantum states: environment as a witness. Phys Rev Lett 93:220401, arXiv:quant-ph/0307229v2Google Scholar
  26. Ollivier H, Poulin D, Zurek WH (2005) Environment as a witness: selective proliferation of information and emergence of objectivity in a quantum universe. Phys Rev A 72:042113, arXiv:quant-ph/0408125v3Google Scholar
  27. Reoderer JG (2005) Information and its role in nature. Springer, BerlinGoogle Scholar
  28. Riedel CJ, Zurek WH (2010) Quantum Darwinism in an everyday environment: huge redundancy in scattered photons. Phys Rev Lett 105: 020404, arXiv:1001.3419 [quant-ph]Google Scholar
  29. Schlosshauer M (2004) Decoherence, the measurement problem, and interpretations of quantum theory. Rev Mod Phys 76:1267–1305, arXiv:quant-ph/0312059v4Google Scholar
  30. Schlosshauer M (2007) Decoherence and the quantum to classical transition. Springer, BerlinGoogle Scholar
  31. Tegmark M (2010) Many worlds in context. In: Saunders S, Barrett J, Kent A, Wallace D (eds) Many Worlds? Everett, quantum theory and reality. Oxford University Press, Oxford, pp 553–581, arXiv:0905.2182v2 [quant-ph]Google Scholar
  32. Wallace D (2008) Philosophy of quantum mechanics. In: Rickles D (ed) The Ashgate companion to contemporary philosophy of physics. Ashgate, Aldershot, pp 16–98, arXiv:0712.0149v1 [quant-ph]Google Scholar
  33. Wallace D (2010) Decoherence and ontology. In: Saunders S, Barrett J, Kent A, Wallace DD (eds) Many Worlds? Everett, quantum theory and reality, Oxford University Press, Oxford, pp 53–72Google Scholar
  34. Wigner EP (1962) Remarks on the mind-body question. In: Good IJ ((eds) The scientist speculates, Basic Books, New York, pp 284–302Google Scholar
  35. Zeh D (1970) On the interpretation of measurement in quantum theory. Found Phys 1:69–76CrossRefGoogle Scholar
  36. Zeh D (1973) Toward a quantum theory of observation. Found Phys 3:109–116CrossRefGoogle Scholar
  37. Zeh D (2006) Roots and fruits of decoherence. In: Duplantier B, Raimond J-M, Rivasseau V (eds) Quantum decoherence. Birkhäuser, Basel, pp 151–175, arXiv:quant-ph/0512078v2Google Scholar
  38. Zurek WH (1981) Pointer basis of the quantum apparatus: into what mixture does the wave packet collapse? Phys Rev D 24:1516–1525CrossRefGoogle Scholar
  39. Zurek WH (1982) Environment-induced superselection rules. Phys Rev D 26:1862–1880CrossRefGoogle Scholar
  40. Zurek WH (1998) Decoherence, einselection and the existential interpretation (the rough guide). Philos Trans R Soc A 356:1793–1821CrossRefGoogle Scholar
  41. Zurek WH (2003) Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys 75:715–775, arXiv:quant-ph/0105127v3Google Scholar
  42. Zurek WH (2005) Probabilities from entanglement, born’s rule p k = |ψk|2 from envariance. Phys Rev A 71: 052105, arXiv:quant-ph/0405161v2Google Scholar
  43. Zurek WH (2007) Relative states and the environment: einselection, envariance, quantum Darwinism, and the existential interpretation. Preprint arXiv:0707.2832v1 [quant-ph]Google Scholar
  44. Zurek WH (2009) Quantum Darwinism. Nat Phys 5:181–188, arXiv:0903.5082v1 [quant-ph]Google Scholar
  45. Zwolak M, Quan HT, Zurek WH (2009) Quantum Darwinism in a hazy environment. Phys Rev Lett 103:110402, arXiv:0904.0418v2 [quant-ph]Google Scholar
  46. Zwolak M, Quan HT, Zurek WH (2010) Quantum Darwinism in non-ideal environments. Phys Rev A 81:062110, arXiv:0911.4307 [quant-ph]Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Santa FeUSA

Personalised recommendations