Consistent Quantum Mechanics Admits No Mereotopology

Abstract

It is standardly assumed in discussions of quantum theory that physical systems can be regarded as having well-defined Hilbert spaces. It is shown here that a Hilbert space can be consistently partitioned only if its components are assumed not to interact. The assumption that physical systems have well-defined Hilbert spaces is, therefore, physically unwarranted.

This is a preview of subscription content, access via your institution.

References

  1. Blume-Kohout R, Zurek WH (2006) Quantum Darwinism: entanglement, branches, and the emergent classicality of redundantly stored quantum information. Phys Rev A 73:062310

    Article  Google Scholar 

  2. Brune M, Hagley E, Dreyer J, Maître X, Maali A, Wunderlich C, Raimond JM, Haroche S (1996) Observing the progressive decoherence of the “meter” in a quantum measurement. Phys Rev Lett 77:4887–4890

    Article  Google Scholar 

  3. Casati R, Varzi AC (1999) Parts and places: the structures of spatial representation. MIT Press, Cambridge, MA

    Google Scholar 

  4. Fields C (2010) Quantum Darwinism requires an extra-theoretical assumption of encoding redundancy. Int J Theor Phys 49:2523–2527

    Google Scholar 

  5. Fields C (2011) Classical system boundaries cannot be determined within quantum Darwinism. Phys Essays 24:518–522

    Google Scholar 

  6. Fields C (2012a) If physics is an information science, what is an observer? Information 3:92–123

  7. Fields C (2012b) A model-theoretic interpretation of environmentally-induced superselection. Int J Gen Syst 41:847–859

    Google Scholar 

  8. Fields C (2012c) Autonomy all the way down: Systems and dynamics in quantum Bayesianism. Phys Philos 2012:018

  9. Griffiths RB (2002) Consistent quantum theory. Cambridge University Press, New York. http://quantum.phys.cmu.edu/CQT/. Accessed 5 Aug 2011

  10. Griffiths RB (2011) A consistent quantum ontology. Preprint arXiv:1105.3932v1 [quant-ph]

  11. Hartle JB (2008) The quasiclassical realms of this quantum universe. Found Phys 41:982–1006

    Article  Google Scholar 

  12. Landsman NP (2007) Between classical and quantum. In: Butterfield J, Earman J (eds) Handbook of the philosophy of science: philosophy of physics. Elsevier, Amsterdam, pp 417–553

    Google Scholar 

  13. Nielsen MA, Chaung IL (2000) Quantum information and quantum computation. Cambridge University Press, Cambridge

    Google Scholar 

  14. Ollivier H, Poulin D, Zurek WH (2004) Objective properties from subjective quantum states: environment as a witness. Phys Rev Lett 93:220401

    Article  Google Scholar 

  15. Ollivier H, Poulin D, Zurek WH (2005) Environment as a witness: selective proliferation of information and emergence of objectivity in a quantum universe. Phys Rev A 72:042113

    Article  Google Scholar 

  16. Omnès R (1992) Consistent interpretations of quantum mechanics. Rev Mod Phys 64:339–382

    Article  Google Scholar 

  17. Omnès R (2008) Decoherence and ontology. Ontol Stud 8:55–63

    Google Scholar 

  18. Schlosshauer M (2004) Decoherence, the measurement problem, and interpretations of quantum theory. Rev Mod Phys 76:1267–1305

    Article  Google Scholar 

  19. Schlosshauer M (2006) Experimental motivation and empirical consistency of minimal no-collapse quantum mechanics. Ann Phys 321:112–149

    Article  Google Scholar 

  20. Schlosshauer M (2007) Decoherence and the quantum to classical transition. Springer, Berlin

    Google Scholar 

  21. Smith B (1996) Mereotopology: a theory of parts and boundaries. Data Knowl Eng 20:287–303

    Article  Google Scholar 

  22. Smith B, Brogaard BA (2002) Quantum mereotopology. Ann Math Artif Intell 35:1–9

    Article  Google Scholar 

  23. Varzi AC (1994) On the boundary between mereology and topology. In: Casati R, Smith B, White G (eds) Philosophy and the cognitive sciences. Hölder-Pichler-Tempsky, Vienna, pp 419–438

    Google Scholar 

  24. Varzi AC (1996) Parts, wholes and part-whole relations: the prospects of mereotopology. Data Knowl Eng 20:259–286

    Article  Google Scholar 

  25. Wallace D (2008) Philosophy of quantum mechanics. In: Rickles D (eds) The Ashgate companion to contemporary philosophy of physics. Ashgate, Aldershot, pp 16–98

    Google Scholar 

  26. Zurek WH (1998) Decoherence, einselection and the existential interpretation (the rough guide). Phil Trans R Soc A 356:1793–1821

    Article  Google Scholar 

  27. Zurek WH (2003) Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys 75:715–775

    Article  Google Scholar 

  28. Zurek WH (2005) Probabilities from entanglement, Born’s rule p k  = |ψ k |2 from envariance. Phys Rev A 71:052105

    Article  Google Scholar 

  29. Zurek WH (2009) Quantum Darwinism. Nat Phys 5:181–188

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris Fields.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fields, C. Consistent Quantum Mechanics Admits No Mereotopology. Axiomathes 24, 9–18 (2014). https://doi.org/10.1007/s10516-012-9202-3

Download citation

Keywords

  • Systems
  • Consistent histories
  • Mereological partition
  • Decoherence
  • Quantum-to-classical transition