, Volume 24, Issue 1, pp 9–18 | Cite as

Consistent Quantum Mechanics Admits No Mereotopology

  • Chris Fields
Original Paper


It is standardly assumed in discussions of quantum theory that physical systems can be regarded as having well-defined Hilbert spaces. It is shown here that a Hilbert space can be consistently partitioned only if its components are assumed not to interact. The assumption that physical systems have well-defined Hilbert spaces is, therefore, physically unwarranted.


Systems Consistent histories Mereological partition Decoherence Quantum-to-classical transition 


  1. Blume-Kohout R, Zurek WH (2006) Quantum Darwinism: entanglement, branches, and the emergent classicality of redundantly stored quantum information. Phys Rev A 73:062310CrossRefGoogle Scholar
  2. Brune M, Hagley E, Dreyer J, Maître X, Maali A, Wunderlich C, Raimond JM, Haroche S (1996) Observing the progressive decoherence of the “meter” in a quantum measurement. Phys Rev Lett 77:4887–4890CrossRefGoogle Scholar
  3. Casati R, Varzi AC (1999) Parts and places: the structures of spatial representation. MIT Press, Cambridge, MAGoogle Scholar
  4. Fields C (2010) Quantum Darwinism requires an extra-theoretical assumption of encoding redundancy. Int J Theor Phys 49:2523–2527Google Scholar
  5. Fields C (2011) Classical system boundaries cannot be determined within quantum Darwinism. Phys Essays 24:518–522Google Scholar
  6. Fields C (2012a) If physics is an information science, what is an observer? Information 3:92–123Google Scholar
  7. Fields C (2012b) A model-theoretic interpretation of environmentally-induced superselection. Int J Gen Syst 41:847–859Google Scholar
  8. Fields C (2012c) Autonomy all the way down: Systems and dynamics in quantum Bayesianism. Phys Philos 2012:018Google Scholar
  9. Griffiths RB (2002) Consistent quantum theory. Cambridge University Press, New York. Accessed 5 Aug 2011
  10. Griffiths RB (2011) A consistent quantum ontology. Preprint arXiv:1105.3932v1 [quant-ph]Google Scholar
  11. Hartle JB (2008) The quasiclassical realms of this quantum universe. Found Phys 41:982–1006CrossRefGoogle Scholar
  12. Landsman NP (2007) Between classical and quantum. In: Butterfield J, Earman J (eds) Handbook of the philosophy of science: philosophy of physics. Elsevier, Amsterdam, pp 417–553Google Scholar
  13. Nielsen MA, Chaung IL (2000) Quantum information and quantum computation. Cambridge University Press, CambridgeGoogle Scholar
  14. Ollivier H, Poulin D, Zurek WH (2004) Objective properties from subjective quantum states: environment as a witness. Phys Rev Lett 93:220401CrossRefGoogle Scholar
  15. Ollivier H, Poulin D, Zurek WH (2005) Environment as a witness: selective proliferation of information and emergence of objectivity in a quantum universe. Phys Rev A 72:042113CrossRefGoogle Scholar
  16. Omnès R (1992) Consistent interpretations of quantum mechanics. Rev Mod Phys 64:339–382CrossRefGoogle Scholar
  17. Omnès R (2008) Decoherence and ontology. Ontol Stud 8:55–63Google Scholar
  18. Schlosshauer M (2004) Decoherence, the measurement problem, and interpretations of quantum theory. Rev Mod Phys 76:1267–1305CrossRefGoogle Scholar
  19. Schlosshauer M (2006) Experimental motivation and empirical consistency of minimal no-collapse quantum mechanics. Ann Phys 321:112–149CrossRefGoogle Scholar
  20. Schlosshauer M (2007) Decoherence and the quantum to classical transition. Springer, BerlinGoogle Scholar
  21. Smith B (1996) Mereotopology: a theory of parts and boundaries. Data Knowl Eng 20:287–303CrossRefGoogle Scholar
  22. Smith B, Brogaard BA (2002) Quantum mereotopology. Ann Math Artif Intell 35:1–9CrossRefGoogle Scholar
  23. Varzi AC (1994) On the boundary between mereology and topology. In: Casati R, Smith B, White G (eds) Philosophy and the cognitive sciences. Hölder-Pichler-Tempsky, Vienna, pp 419–438Google Scholar
  24. Varzi AC (1996) Parts, wholes and part-whole relations: the prospects of mereotopology. Data Knowl Eng 20:259–286CrossRefGoogle Scholar
  25. Wallace D (2008) Philosophy of quantum mechanics. In: Rickles D (eds) The Ashgate companion to contemporary philosophy of physics. Ashgate, Aldershot, pp 16–98Google Scholar
  26. Zurek WH (1998) Decoherence, einselection and the existential interpretation (the rough guide). Phil Trans R Soc A 356:1793–1821CrossRefGoogle Scholar
  27. Zurek WH (2003) Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys 75:715–775CrossRefGoogle Scholar
  28. Zurek WH (2005) Probabilities from entanglement, Born’s rule p k = |ψk|2 from envariance. Phys Rev A 71:052105CrossRefGoogle Scholar
  29. Zurek WH (2009) Quantum Darwinism. Nat Phys 5:181–188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Santa FeUSA

Personalised recommendations