Axiomathes

, Volume 21, Issue 2, pp 221–232 | Cite as

Non-Classical Correlations in Bistable Perception?

Original Paper

Abstract

A violation of Bell’s inequalities is generally considered to be the Holy Grail of experimental proof that a specific natural phenomenon cannot be explained in a classical framework and is based on a non-boolean structure of predications. Generalized quantum theory allows for such non-boolean predications. We formulate temporal Bell’s inequalities for cognitive two-state systems and indicate how these inequalities can be tested. This will introduce the notion of temporally non-local measurements. The Necker-Zeno model for bistable perception predicts a violation of these temporal Bell’s inequalities.

Keywords

Necker-Zeno model Bistable perception Bell inequalities 

References

  1. Aspect A, Dalibard J, Roger G (1982) Experimental test of Bell’s inequalities using time-varying analyzers. Phys Rev Lett 49(25):1804–1807CrossRefGoogle Scholar
  2. Atmanspacher H (1992) Categoreal and acategoreal representation of knowledge. Cogn Syst 3:259–288Google Scholar
  3. Atmanspacher H, Filk T (2006) Complexity and non-commutativity of learning operations on graphs. BioSystems 85:84–93CrossRefGoogle Scholar
  4. Atmanspacher H, Filk T (2010) A proposed test of temporal nonlocality in bistable perception. J Math Psychol 54:314–321CrossRefGoogle Scholar
  5. Atmanspacher H, Römer H, Walach H (2002) Weak quantum theory: complementarity and entanglement in physics and beyond. Found Phys32:379–406CrossRefGoogle Scholar
  6. Atmanspacher H, Filk T, Römer H (2004) Quantum Zeno features of bistable perception. Biol Cybern 90:33–40CrossRefGoogle Scholar
  7. Atmanspacher H, Filk T, Römer H (2006) Weak quantum theory: formal framework and selected applications. In: Adenier G (ed) Quantum theory: reconsideration of foundations—3. American Institute of Physics, New York, pp 34–46Google Scholar
  8. Atmanspacher H, Bach M, Filk T, Kornmeier J, Römer H (2008a) Cognitive time scales in a Necker-Zeno model for bistable perception. Open Cybern Syst J 2:234–251CrossRefGoogle Scholar
  9. Atmanspacher H, Filk T, Römer H (2008b) Complementarity in bistable perception. In: Atmanspacher H, Primas H (eds) Recasting reality—Wolfgang Pauli’s philosophical ideas in contemporary science. Proceedings of the Pauli-conference, Ascona, May 2007, Springer, Berlin, pp 135–150Google Scholar
  10. Bell JS (1966) On the problem of hidden variables in quantum theory. Rev Mod Phys 38:447CrossRefGoogle Scholar
  11. Bohr N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 48:696–702CrossRefGoogle Scholar
  12. Brascamp JW, van Ee R, Pestman WR, van den Berg AV (2005) Distributions of alternation rates in various forms of bistable perception. J Vis 5:287–298CrossRefGoogle Scholar
  13. David Mermin N (1990) What’s wrong with these elements of reality? Physics today, June 1990, p 9; and Quantum mysteries revisited. Am J Phys 58:731CrossRefGoogle Scholar
  14. d’Espagnat B (1979) The quantum theory and reality. Sci Am 241:158–181CrossRefGoogle Scholar
  15. Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777CrossRefGoogle Scholar
  16. Feil D, Atmanspacher H (2010) Acategorial states in a representational theory of mental processes. J Conscious Stud 17:72–101Google Scholar
  17. Gebser J (1986) The ever-present origin. Ohio University Press, AthensGoogle Scholar
  18. Giuntini R (1991) Quantum logic and hidden variables. BI-Wissenschaftsverlag, MannheimGoogle Scholar
  19. Leggett AJ, Garg A (1985) Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys Rev Lett 54:857–860CrossRefGoogle Scholar
  20. Mahler G (1994) Temporal Bell inequalities: a journey to the limits of “consistent histories”. In: Atmanspacher H, Dalenoort G (eds) Inside versus outside. Endo- and exo-concepts of observation and knowledge in physics, philosophy and cognitive science. Springer, Berlin, pp 195–205Google Scholar
  21. Misra B, Sudarshan ECG (1977) The Zeno’s paradox in quantum theory. J Math Phys 18:756–763CrossRefGoogle Scholar
  22. Necker LA (1832) Observations on some remarkable phenomenon which occurs in viewing a figure of a crystal or geometrical solid. Lond Edinb Philos Mag J Sci 3:329–337Google Scholar
  23. Pöppel E (1997) A hierarchical model of temporal perception. Trends Cogn Sci 1:56–61CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute for PhysicsUniversity of FreiburgFreiburgGermany

Personalised recommendations