Skip to main content
Log in

S4-SLAM: A real-time 3D LIDAR SLAM system for ground/watersurface multi-scene outdoor applications

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

For outdoor ground/watersurface multi-scene applications with sparse feature points, high moving speed and high dynamic noises, a real-time 3D LIDAR SLAM system (S4-SLAM) for unmanned vehicles/ships is proposed in this paper, which is composed of the odometry function in front-end and the loop closure function in back-end. Firstly, linear interpolation is used to eliminate the motion distortion caused by robot motions in the data pre-processing step. Two nodes are constructed in the odometry function: the localization node combines the improved Super4PCS with the standard ICP to realize a coarse-to-fine scan matching and outputs the location information of the robot at a high frequency (5 Hz); the correction node introduces a local map with dynamic voxel grid storage structure, which can accelerate the NDT(Normal Distributions Transform) matching process between key-frames and the local map, and then corrects the localization node at a low frequency (1 Hz) to obtain more accurate location information. In the loop closure function, a location-based loop detection approach is introduced and the overlap rate of point clouds is used to verify the loops, so that the global optimization can be carried out to obtain high-precision trajectory and map estimates. The proposed method has been extensively evaluated on the KITTI odometry benchmark and also tested in real-life campus and harbor environments. The results show that our method has low dependence on GPS/INS, high positioning accuracy (with the global drift under 1%) and good environmental robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aiger, D., Mitra, N. J., & Cohen-Or, D. (2008). 4-points congruent sets for robust pairwise surface registration. ACM Transactions on Graphics (TOG), 27(3), 85.

    Article  Google Scholar 

  • Almeida, J., & Santos, V. M. (2013). Real time egomotion of a nonholonomic vehicle using LIDAR measurements. Journal of Field Robotics, 30(1), 129–141.

    Article  Google Scholar 

  • Bae, K. H. (2009). Evaluation of the convergence region of an automated registration method for 3D laser scanner point clouds. Sensors, 9, 355–375.

    Article  Google Scholar 

  • Behley, J., & Stachniss, C. (2018). Efficient Surfel-based SLAM using 3D laser range data in urban environments. In Robotics: Science and Systems.

    Book  Google Scholar 

  • Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. Sensor Fusion IV: Control Paradigms and Data Structures, 1611, 586–607.

    Google Scholar 

  • Biber, P., & Straßer, W. (2003). The normal distributions transform: A new approach to laser scan matching. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, USA.

  • Bouaziz, S., Tagliasacchi, A., & Pauly, M. (2013). Sparse iterative closest point. In Proceedings of the Eleventh Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Oxford, UK.

  • Ceriani, S., Sánchez, C., Taddei, P., Wolfart, E., & Sequeira, V. (2015). Pose interpolation slam for large maps using moving 3d sensors. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 750–757).

  • da Silva, J. P., Borges, D. L., & de Barros Vidal, F. (2011). A dynamic approach for approximate pairwise alignment based on 4-points congruence sets of 3D points. In 2011 18th IEEE International Conference on Image Processing (pp. 889–892).

  • Deschaud, J. E. (2018, May). IMLS-SLAM: scan-to-model matching based on 3D data. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2480–2485).

  • Dubé, R., Dugas, D., Stumm, E., Nieto, J., Siegwart, R., & Cadena, C. (2017). Segmatch: Segment based place recognition in 3d point clouds. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5266–5272).

  • Dubé, R., Gollub, M. G., Sommer, H., Gilitschenski, I., Siegwart, R., Cadena, C., et al. (2018). Incremental-segment-based localization in 3-d point clouds. IEEE Robotics and Automation Letters, 3(3), 1832–1839.

    Article  Google Scholar 

  • Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. The International Journal of Robotics Research, 32, 1229–1235.

    Article  Google Scholar 

  • Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 3354–3361).

  • Irani, S., & Raghavan, P. (1999). Combinatorial and experimental results for randomized point matching algorithms. Computational Geometry, 12(1–2), 17–31.

    Article  MathSciNet  Google Scholar 

  • Ji, K., Chen, H., Di, H., Gong, J., Xiong, G., Qi, J., & Yi, T. (2018). CPFG-SLAM: a robust simultaneous localization and mapping based on LIDAR in off-road environment. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 650–655).

  • Kammel, S., Ziegler, J., Pitzer, B., Werling, M., Gindele, T., Jagzent, D., et al. (2008). Team AnnieWAY’s autonomous system for the 2007 DARPA Urban Challenge. Journal of Field Robotics, 25(9), 615–639.

    Article  Google Scholar 

  • Koide, K., Miura, J., & Menegatti, E. (2018). A Portable 3D LIDAR-based system for long-term and wide-area people behavior measurement. IEEE Transactions on Human-Machine Systems.

  • Latif, Y., Cadena, C., & Neira, J. (2013). Robust loop closing over time for pose graph SLAM. The International Journal of Robotics Research, 32(14), 1611–1626.

    Article  Google Scholar 

  • Magnusson, M. (2009). The Three-Dimensional Normal-Distributions Transform: an Efficient Representation for Registration, Surface Analysis, and Loop Detection. Renewable Energy, 28(4), 655–663.

    MathSciNet  Google Scholar 

  • Magnusson, M., Nuchter, A., Lorken, C., Lilienthal, A. J., & Hertzberg, J. (2009). Evaluation of 3D registration reliability and speed-A comparison of ICP and NDT. In 2009 IEEE International Conference on Robotics and Automation (pp. 3907–3912).

  • Mellado, N., Aiger, D., & Mitra, N. J. (2014). Super 4pcs fast global pointcloud registration via smart indexing. Computer Graphics Forum, 33(5), 205–215.

    Article  Google Scholar 

  • Moosmann, F., & Stiller, C. (2011). Velodyne slam. In 2011 IEEE Intelligent Vehicles Symposium (IV) (pp. 393–398).

  • Pottmann, H., Huang, Q. X., Yang, Y. L., & Hu, S. M. (2006). Geometry and convergence analysis of algorithms for registration of 3D shapes. International Journal of Computer Vision, 67, 277–296.

    Article  Google Scholar 

  • Shan, T., & Englot, B. (2018). LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4758–4765).

  • Viejo, D., & Cazorla, M. (2014). A robust and fast method for 6DoF motion estimation from generalized 3D data. Autonomous Robots, 36(4), 295–308.

    Article  Google Scholar 

  • Yang, J., Li, H., Campbell, D., & Jia, Y. (2016). Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2241–2254.

    Article  Google Scholar 

  • Zhang, J., & Singh, S. (2014). LOAM: Lidar Odometry and Mapping in Real-time. In Robotics: Science and Systems, 2(9).

  • Zhang, J., & Singh, S. (2015). Visual-lidar odometry and mapping: Low-drift, robust, and fast. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2174–2181).

  • Zhang, J., & Singh, S. (2017). Low-drift and real-time lidar odometry and mapping. Autonomous Robots, 41(2), 401–416.

    Article  Google Scholar 

Download references

Acknowledgement

This work is partly supported by the National Natural Science Foundation (NNSF) of China under the Grants Nos. 62073075, 61673254, U1613226, and 61573100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., He, Y., Qian, K. et al. S4-SLAM: A real-time 3D LIDAR SLAM system for ground/watersurface multi-scene outdoor applications. Auton Robot 45, 77–98 (2021). https://doi.org/10.1007/s10514-020-09948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09948-3

Keywords

Navigation