Skip to main content
Log in

Formation control of unmanned micro aerial vehicles for straitened environments

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a novel approach for control and motion planning of formations of multiple unmanned micro aerial vehicles (multi-rotor helicopters, in the literature also often called unmanned aerial vehicles—UAVs or unmanned aerial system—UAS) in cluttered GPS-denied on straitened environments. The proposed method enables us to autonomously design complex maneuvers of a compact Micro Aerial Vehicles (MAV) team in a virtual-leader-follower scheme. The results of the motion planning approach and the required stability of the formation are achieved by migrating the virtual leader along with the hull surrounding the formation. This enables us to suddenly change the formation motion in all directions, independently from the current orientation of the formation, and therefore to fully exploit the maneuverability of small multi-rotor helicopters. The proposed method was verified and its performance has been statistically evaluated in numerous simulations and experiments with a fleet of MAVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Video of the experiment in the work of Walter et al. (2018) can be seen at http://mrs.felk.cvut.cz/directed-following-with-uvdd.

  2. Transition points are states on the planned trajectory where the control inputs are changed. In other words, the control inputs are constant in the interval between two successive transition points in the MPC.

  3. Values \(c_1\) = 1000, b = 20 and \(\alpha _{min}\) = 0.7 are used in all of the experiments in this paper.

  4. A video of the real robot experiment is available at https://youtu.be/slzlHtve3kY.

References

  • Ambroziak, L., & Gosiewski, Z. (2015). Two stage switching control for autonomous formation flight of unmanned aerial vehicles. Aerospace Science and Technology, 46, 221–226.

    Article  Google Scholar 

  • Aoki, Y., Asano, Y., Honda, A., Motooka, N., & Ohtsuka, T. (2018). Nonlinear model predictive control of position and attitude in a hexacopter with three failed rotors*. IFAC-PapersOnLine, 51(20), 228–233. https://doi.org/10.1016/j.ifacol.2018.11.018.

    Article  Google Scholar 

  • Baca, T., Loianno, G., & Saska, M. (2016). Embedded model predictive control of unmanned micro aerial vehicles. In 2016 IEEE international conference on methods and models in automation and robotics (MMAR). Miedzyzdroje, Poland. https://doi.org/10.1109/MMAR.2016.7575273.

  • Birn, J. (2014). Digita lLighting & Rendering. Voices That Matter.

  • Barfoot, T. D., & Clark, C. M. (2004). Motion planning for formations of mobile robots. Robotics and Autonomous Systems, 46, 65–78.

    Article  Google Scholar 

  • Cameron, S. (1998). Computing the distance between objects. Oxford university source codes. http://www.cs.ox.ac.uk/stephen.cameron/distances/.

  • Dang, A. D., La, H. M., Nguyen, T., & Horn, J. (2019). Formation control for autonomous robots with collision and obstacle avoidance using a rotational and repulsive force-based approach. International Journal of Advanced Robotic Systems, 16(3), 1729881419847897. https://doi.org/10.1177/1729881419847897.

    Article  Google Scholar 

  • Do, K. D., & Lau, M. W. (2011). Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges. Journal of Intelligent and Robotic Systems, 64(2), 245–275.

    Article  MATH  Google Scholar 

  • Dong, W. (2011). Robust formation control of multiple wheeled mobile robots. Journal of Intelligent and Robotic Systems, 62(3–4), 547–565.

    Article  MATH  Google Scholar 

  • Faigl, J., Krajník, T., Chudoba, J., Preucil, L., & Saska, M. (2013). Low-cost embedded system for relative localization in robotic swarms. In IEEE ICRA.

  • Garrido, S., Moreno, L., & Lima, P. U. (2011). Robot formation motion planning using fast marching. Robotics and Autonomous Systems, 59(9), 675–683.

    Article  Google Scholar 

  • Ghommam, J., Mehrjerdi, H., Saad, M., & Mnif, F. (2010). Formation path following control of unicycle-type mobile robots. Robotics and Autonomous Systems, 58(5), 727–736.

    Article  Google Scholar 

  • Gilbert, E. G., Johnson, D., & Keerthi, S. (1988). A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Journal of Robotics and Automation, 4(2), 193–203.

    Article  Google Scholar 

  • Hengster-Movrić, K., Bogdan, S., & Draganjac, I. (2010). Multi-agent formation control based on bell-shaped potential functions. Journal of Intelligent and Robotic Systems, 58(2), 165–189.

    Article  MATH  Google Scholar 

  • HK. (2013). Digital Lighting and Rendering. Springer.

  • Krajník, T., Faigl, J., Vonásek, V., Kosnar, K., Kulich, M., & Preucil, L. (2010). Simple yet stable bearing-only navigation. Journal of Field Robotics, 27(5), 511–533.

    Article  Google Scholar 

  • Krajnik, T., Nitsche, M., Faigl, J., Vanek, P., Saska, M., Preucil, L., et al. (2014). A practical multirobot localization system. Journal of Intelligent & Robotic Systems, 76, 539–562.

    Article  Google Scholar 

  • Kuriki, Y., & Namerikawa, T. (2015). Formation control with collision avoidance for a multi-uav system using decentralized MPC and consensus-based control. SICE Journal of Control, Measurement, and System Integration, 8(4), 285–294.

    Article  Google Scholar 

  • Kushleyev, A., Mellinger, D., Powers, C., & Kumar, V. (2013). Towards a swarm of agile micro quadrotors. Autonomous Robots, 35(4), 287–300.

    Article  Google Scholar 

  • Kwon, J. W., Kim, J. H., & Seo, J. (2015). Article multiple leader candidate and competitive position allocation for robust formation against member robot faults. Sensors, 15(5), 10771–10790.

    Article  Google Scholar 

  • L’Afflitto, A., Anderson, R. B., & Mohammadi, K. (2018). An introduction to nonlinear robust control for unmanned quadrotor aircraft: How to design control algorithms for quadrotors using sliding mode control and adaptive control techniques. IEEE Control Systems, 38(3), 102–121. https://doi.org/10.1109/MCS.2018.2810559.

    Article  MathSciNet  Google Scholar 

  • Lawrence, C., Zhou, J., & Tits, A. (1997). User’s guide for CFSQP version 2.5. University of Maryland.

  • Lee, H., & Kim, H. J. (2017). Trajectory tracking control of multirotors from modelling to experiments: A survey. International Journal of Control, Automation and Systems, 15(1), 281–292. https://doi.org/10.1007/s12555-015-0289-3.

    Article  Google Scholar 

  • Lima, P. U., Ahmad, A., Dias, A., Ao, A. G. C., Moreira, A. P., Silva, E., et al. (2015). Formation control driven by cooperative object tracking. Robotics and Autonomous Systems, 63, 68–79. https://doi.org/10.1016/j.robot.2014.08.018.

    Article  Google Scholar 

  • Liu, Y., & Jia, Y. (2012). An iterative learning approach to formation control of multi-agent systems. Systems & Control Letters, 61(1), 148–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Y., Rajappa, S., Montenbruck, J. M., Stegagno, P., Bülthoff, H., Allgöwer, F., et al. (2017). Robust nonlinear control approach to nontrivial maneuvers and obstacle avoidance for quadrotor UAV under disturbances. Robotics and Autonomous Systems, 98, 317–332. https://doi.org/10.1016/j.robot.2017.08.011.

    Article  Google Scholar 

  • Liu, Z. X., Yu, X., Yuan, C., & Zhang, Y. M. (2015). Leader-follower formation control of unmanned aerial vehicles with fault tolerant and collision avoidance capabilities. In ICUAS.

  • Loianno, G., Brunner, C., McGrath, G., & Kumar, V. (2017). Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and IMU. IEEE Robotics and Automation Letters, 2(2), 404–411. https://doi.org/10.1177/00957984880151008.

    Article  Google Scholar 

  • Mansouri, S. S., Nikolakopoulos, G., & Gustafsson, T. (2015). Distributed model predictive control for unmanned aerial vehicles. In Workshop on research, education and development of unmanned aerial systems.

  • Marzat, J., Bertrand, S., Eudes, A., Sanfourche, M., & Moras, J. (2017). Reactive MPC for autonomous MAV navigation in indoor cluttered environments: Flight experiments. IFAC-PapersOnLine, 50(1), 15996–16002. https://doi.org/10.1016/j.ifacol.2017.08.1910.

    Article  Google Scholar 

  • Mayne, D. Q., Rawlings, J. B., Rao, C., & Scokaert, P. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), 789–814.

    Article  MathSciNet  MATH  Google Scholar 

  • Monteriu, A. (2015). Nonlinear decentralized model predictive control for unmanned vehicles moving in formation. Information Technology and Control, 44(1), 89–97.

    Article  Google Scholar 

  • Muñoz, F., Espinoza Quesada, E. S., La, H. M., Salazar, S., Commuri, S., & Garcia Carrillo, L. R. (2017). Adaptive consensus algorithms for real-time operation of multi-agent systems affected by switching network events. International Journal of Robust and Nonlinear Control, 27(9), 1566–1588. https://doi.org/10.1002/rnc.3687.

    Article  MathSciNet  MATH  Google Scholar 

  • Nascimento, T. P., Conceição, A. S., & Moreira, A. P. (2014). Multi-robot nonlinear model predictive formation control: The obstacle avoidance problem. Robotica, 34(3), 549–567. https://doi.org/10.1017/S0263574714001696.

    Article  Google Scholar 

  • Nascimento, T. P., Moreira, A. P., Ao, A. G. S. C., & Bonarini, A. (2013). Intelligent state changing applied to multi-robot systems. Robotics and Autonomous Systems, 61(2), 115–124. https://doi.org/10.1016/j.robot.2012.10.011.

    Article  Google Scholar 

  • Saska, M., Baca, T., & Hert, D. (2016). Formations of unmanned micro aerial vehicles led by migrating virtual leader. In 2016 14th international conference on control, automation, robotics and vision (ICARCV) (pp. 1–6). https://doi.org/10.1109/ICARCV.2016.7838801.

  • Saska, M., Kratky, V., Spurny, V., & Baca, T. (2017). Documentation of dark areas of large historical buildings by a formation of unmanned aerial vehicles using model predictive control. In IEEE ETFA.

  • Saska, M., Mejia, J. S., Stipanovic, D. M., & Schilling, K. (2009). Control and navigation of formations of car-like robots on a receding horizon. In Proceedings of of 3rd IEEE multi-conference on systems and control.

  • Saska, M., Vonasek, V., Krajnik, T., & Preucil, L. (2014). Coordination and navigation of heterogeneous MAV&UGV formations localized by a “hawk-eye”-like approach under a model predictive control scheme. International Journal of Robotics Research, 33(10), 1393–1412.

    Article  Google Scholar 

  • Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., et al. (2014). Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robotics Automation Magazine, 21(3), 26–40.

    Article  Google Scholar 

  • Shraim, H., Awada, A., & Youness, R. (2018). A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerospace and Electronic Systems Magazine, 33(7), 14–33. https://doi.org/10.1109/MAES.2018.160246.

    Article  Google Scholar 

  • Sira-Ramiandrez, H., & Castro-Linares, R. (2010). Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation. In IEEE CDC.

  • Sperandio Giacomin, P. A., & Hemerly, E. M. (2014). Reconfiguration between longitudinal and circular formations for multi-UAV systems by using segments. Journal of Intelligent & Robotic Systems, 78(2), 339–355.

    Article  Google Scholar 

  • Spurný, V., Báča, T., Saska, M., Pěnička, R., Krajník, T., Thomas, J., et al. (2019). Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a team of unmanned aerial vehicles. Journal of Field Robotics, 36(1), 125–148.

    Article  Google Scholar 

  • Swaminathan, S., Phillips, M., & Likhachev, M. (2015). Planning for multi-agent teams with leader switching. In IEEE ICRA.

  • Tavares, A. D. H. B. M., Madruga, S. P., Brito, A. V., & Nascimento, T. P. (2019). Dynamic leader allocation in multi-robot systems based on nonlinear model predictive control. Journal of Intelligent & Robotic Systems,. https://doi.org/10.1007/s10846-019-01064-4.

    Article  Google Scholar 

  • Walter, V., Saska, M., & Franchi, A. (2018). Fast mutual relative localization of UAVs using ultraviolet led markers. In 2018 international conference of unmanned aircraft system (ICUAS 2018).

  • Wang, X., Ni, W., & Wang, X. (2012). Leader-following formation of switching multirobot systems via internal model. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(3), 817–826.

    Article  MathSciNet  Google Scholar 

  • Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids). In H. Maurer (Ed.), New results and new trends in computer science (pp. 359–370). Berlin: Springer.

    Chapter  Google Scholar 

  • Xiao, F., Wang, L., Chen, J., & Gao, Y. (2009). Finite-time formation control for multi-agent systems. Automatica, 45(11), 2605–2611.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y., & Ma, K. (2013). Lighting design for globally illuminated volume rendering. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2946–2955. https://doi.org/10.1109/TVCG.2013.172.

    Article  Google Scholar 

Download references

Acknowledgements

This research was developed in partnership with the Systems Engineering and Robotics Lab (LaSER) from the Department of Computer Systems, Universidade Federal da Paraiba (UFPB), João Pessoa - Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Nascimento.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors would like to thank program of International Mobility of Researchers in CTU, Reg. Number: \(CZ.02.2.69/0.0/0.0/16_027/0008465\), the GACR (Grant Agency of the Czech Republic) project with ID 17-16900Y, CTU Grant SGS with ID SGS20/174/OHK3/3T/13, and CZ.02.1.01/0.0/0.0/16019/0000765 “Research Center for Informatics”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saska, M., Hert, D., Baca, T. et al. Formation control of unmanned micro aerial vehicles for straitened environments. Auton Robot 44, 991–1008 (2020). https://doi.org/10.1007/s10514-020-09913-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09913-0

Keywords

Navigation