Skip to main content
Log in

Model-referenced pose estimation using monocular vision for autonomous intervention tasks

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This study addresses vision-based underwater navigation techniques to automate underwater intervention tasks with robotic vehicles. A systematic procedure of model-referenced pose estimation is introduced to obtain the relative pose information between the underwater vehicle and the underwater structures whose geometry and shape are known. The vision-based pose estimation combined with inertial navigation enables underwater robots to navigate precisely around underwater structures for challenging underwater intervention tasks such as subsea construction, maintenance, and inspection. To demonstrate the feasibility of the proposed approach, a set of experiments were carried out in a test tank using an autonomous underwater vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.

    Article  Google Scholar 

  • Bouthemy, P. (1989). A maximum likelihood framework for determining moving edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(5), 499–511.

    Article  Google Scholar 

  • Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). BRIEF: Binary robust independent elementary features. In European conference on computer vision (pp. 778–792). Berlin: Springer.

  • Chaumette, F., Marchand, E., Spindler, F., Tallonneau, R., & Yol, A. (2012). Computer vision algorithms. http://visp-doc.inria.fr/manual/visp-tutorial-computer-vision.pdf. Accessed 14 May 2018.

  • Choi, C., & Christensen, H. I. (2018). Robust 3D visual tracking using particle filtering on the special euclidean group: A combined approach of keypoint and edge features. The International Journal of Robotics Research, 31(4), 498–519.

    Article  Google Scholar 

  • Cieslak, P., Ridao, P., & Giergiel, M. (2015). Autonomous underwater panel operation by GIRONA500 UVMS: A practical approach to autonomous underwater manipulation. In IEEE International conference on robotics and automation (pp 529–536).

  • Comport, A. I., Marchand, E., & Chaumette, F. (2004). Robust model-based tracking for robot vision. IEEE/RSJ International Conference on Intelligent Robots and Systems, 1, 692–697.

    Google Scholar 

  • Comport, A. I., Marchand, E., Pressigout, M., & Chaumette, F. (2006). Real-time markerless tracking for augmented reality: The virtual visual servoing framework. IEEE Transactions on Visualization and Computer Graphics, 12(4), 615–628.

    Article  Google Scholar 

  • Dementhon, D. F., & Davis, L. S. (1995). Model-based object pose in 25 lines of code. International Journal of Computer Vision, 15(1), 123–141.

    Article  Google Scholar 

  • Drummond, T., Society, I. C., & Cipolla, R. (2002). Real-time visual tracking of complex structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 932–946.

    Article  Google Scholar 

  • Enrico, S., Giuseppe, C., Sandro, T., Alessandro, S., & Alessio, T. (2018). Floating underwater manipulation: Developed control methodology and experimental validation within the TRIDENT project. Journal of Field Robotics, 31(3), 364–385.

    Google Scholar 

  • Espiau, B., Chaumette, F., & Rives, P. (1992). A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation, 8(3), 313–326.

    Article  Google Scholar 

  • Evans, J., Redmond, P., Plakas, C., Hamilton, K., & Lane, D. (2003). Autonomous docking for intervention-AUVs using sonar and video-based real-time 3D pose estimation. MTS/IEEE OCEANS, 4, 2201–2210.

    Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24, 381–395.

    Article  MathSciNet  Google Scholar 

  • Han, J., Park, J., Kim, T., & Kim, J. (2015). Precision navigation and mapping under bridges with an unmanned surface vehicle. Autonomous Robots, 38(4), 349–362.

    Article  Google Scholar 

  • Harris, C. (1993). Active Vision. Tracking with Rigid Models (pp. 59–73). Cambridge: MIT Press.

    Google Scholar 

  • Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Kim, T., & Kim, J. (2014). Nonlinear filtering for terrain-referenced underwater navigation with an acoustic altimeter. In MTS/IEEE OCEANS (pp 1–6).

  • Klein, G., & Murray, D. W. (2006). Full-3D edge tracking with a particle filter. In European conference on computer vision (pp. 1119–1128).

  • Lewis, F. L. (1986). Optimal estimation: With an introduction to stochastic control theory. New York: Wiley.

    MATH  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Marani, G., Choi, S. K., & Yuh, J. (2009). Underwater autonomous manipulation for intervention missions AUVs. Ocean Engineering, 36(1), 15–23.

    Article  Google Scholar 

  • Marchand, E., Spindler, F., & Chaumette, F. (2005). ViSP for visual servoing: A generic software platform with a wide class of robot control skills. IEEE Robotics and Automation Magazine, 12(4), 40–52.

    Article  Google Scholar 

  • Mörwald. T., Prankl, J., Richtsfeld, A., Zillich, M., & Vincze, M. (2010). BLORT-the blocks world robotic vision toolbox. In IEEE international conference on robotics and automation.

  • Palomeras, N., Carrera, A., Hurtós, N., Karras, G. C., Bechlioulis, C. P., Cashmore, M., et al. (2016). Toward persistent autonomous intervention in a subsea panel. Autonomous Robots, 40(7), 1279–1306.

    Article  Google Scholar 

  • Palomeras, N., Peñalver, A., Massot-Campos, M., Vallicrosa, G., Negre, P.L., Fernández, J.J., Ridao, P., Sanz, P.J., Oliver-Codina, G., & Palomer, A. (2014). I-AUV docking and intervention in a subsea panel. In 2014 IEEE/RSJ international conference on intelligent robots and systems (pp. 2279–2285).

  • Prats, M., Ribas, D., Palomeras, N., García, J. C., Nannen, V., Wirth, S., et al. (2012). Reconfigurable AUV for intervention missions: A case study on underwater object recovery. Intelligent Service Robotics, 5(1), 19–31.

    Article  Google Scholar 

  • Pressigout, M., & Marchand, E. (2006). Real-time 3D model-based tracking: combining edge and texture information. In IEEE international conference on robotics and automation (pp. 2726–2731).

  • Pupilli, M., & Calway, A. (2006). Real-time camera tracking using known 3D models and a particle filter. In 18th International conference on pattern recognition(vol. 1, pp. 199–203).

  • Ridao, P., Carreras, M., Ribas, D., Sanz, P. J., & Oliver, G. (2014). Intervention AUVs: The next challenge. IFAC Proceedings Volumes, 47(3), 12146–12159.

    Article  Google Scholar 

  • Rosten, E., & Drummond, T. (2005). Fusing points and lines for high performance tracking. In Tenth IEEE international conference on computer vision (pp. 1508–1515).

  • Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. In European conference on computer vision (pp. 430–443).

  • Rublee, E., Rabaud, V., Konolige, K., Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. In International conference on computer vision (pp. 2564–2571).

  • Sanz, P. J., Ridao, P., Oliver, G., Casalino, G., Petillot, Y., Silvestre, C., et al. (2013). TRIDENT an European project targeted to increase the autonomy levels for underwater intervention missions. In MTS/IEEE OCEANS (pp. 1–10).

  • Vacchetti, L., Lepetit, V., & Fua, P. (2004). Combining edge and texture information for real-time accurate 3D camera tracking. In Third IEEE and ACM international symposium on mixed and augmented reality (pp 48–56).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwhan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 117216 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kim, T. & Kim, J. Model-referenced pose estimation using monocular vision for autonomous intervention tasks. Auton Robot 44, 205–216 (2020). https://doi.org/10.1007/s10514-019-09886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-019-09886-9

Keywords

Navigation