Live multicast video streaming from drones: an experimental study


We present and evaluate a multicast framework for point-to-multipoint and multipoint-to-point-to-multipoint video streaming that is applicable if both source and receiver nodes are mobile. Receiver nodes can join a multicast group by selecting a particular video stream and are dynamically elected as designated nodes based on their signal quality to provide feedback about packet reception. We evaluate the proposed application-layer rate-adaptive multicast video streaming over an aerial ad-hoc network that uses IEEE 802.11, a desirable protocol that, however, does not support a reliable multicast mechanism due to its inability to provide feedback from the receivers. Our rate-adaptive approach outperforms legacy multicast in terms of goodput, delay, and packet loss. Moreover, we obtain a gain in video quality (PSNR) of \(30\%\) for point-to-multipoint and of \(20\%\) for multipoint-to-point-to-multipoint streaming.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Ahmed, N., Kanhere, S.S., & Jha, S. (2011). Link characterization for aerial wireless sensor networks. In Proceedings of IEEE Global Communications Conference (GLOBECOM).

  2. Andre, T., Hummel, K. A., Schoellig, A. P., Yanmaz, E., Asadpour, M., Bettstetter, C., et al. (2014). Application-driven design of aerial communication networks. IEEE Communications Magazine, 52(5), 129–137.

    Article  Google Scholar 

  3. Ascending Technologies (n.d.) AscTec Pelican., last accessed Aug 2018

  4. Banchs, A., de la Oliva, A., Eznarriaga, L., Kowalski, D. R., & Serrano, P. (2014). Performance analysis and algorithm selection for reliable multicast in IEEE 802.11aa wireless LAN. IEEE Transactions on Vehicular Technology, 63(8), 3875–3891.

    Article  Google Scholar 

  5. Bekmezci, I., Sahingoz, O. K., & Temel, S. (2013). Flying ad-hoc networks (FANETs): A survey. Elsevier Ad-hoc Networks, 11(3), 1254–1270.

    Article  Google Scholar 

  6. Biaz, S., & Wu, S. (2008). Rate adaptation algorithms for IEEE 802.11 networks: A survey and comparison. In Proceedings of IEEE Symposium on Computers and Communications (ISCC).

  7. Chandra, R., Karanth, S., Moscibroda, T., Navda, V., Padhye, J., Ramjee, R., & Ravindranath, L. (2009). Dircast: A practical and efficient Wi-Fi multicast system. In Proceedings of IEEE International Conference on Network Protocols (ICNP).

  8. Chmaj, G., & Selvaraj, H. (2015). Distributed processing applications for UAV/drones: A survey. In Proceedings of Springer International Conference on Systems Engineering (ICSENG).

  9. Choi, S., Choi, N., Seok, Y., Kwon, T., & Choi, Y. (2007). Leader-based rate adaptive multicasting for wireless LANs. In Proceedings of IEEE Global Communications Conference (GLOBECOM).

  10. Crete, F., Dolmiere, T., Ladret, P., & Nicolas, M. (2007). The blur effect: perception and estimation with a new no-reference perceptual blur metric. In Proceedings of SPIE Human Vision and Electronic Imaging (HVEI).

  11. Crow, B. P., Widjaja, I., Kim, J. G., & Sakai, P. T. (1997). IEEE 802.11 wireless local area networks. IEEE Communications Magazine, 35(9), 116–126.

    Article  Google Scholar 

  12. Dujovne, D., & Turletti, T. (2006). Multicast in 802.11 WLANs: An experimental study. In Proceedings of ACM Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM).

  13. Fu, X., Ma, W., & Zhang, Q. (2007). The IEEE 802.16 and 802.11 a coexistence in the license-exempt band. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC).

  14. Ge, P., & McKinley, P.K. (2002). Comparisons of error control techniques for wireless video multicasting. In Proceedings of IEEE International Performance, Computing, and Communications Conference (IPCCC).

  15. Gringoli, F., Serrano, P., Ucar, I., Facchi, N., & Azcorra, A. (2018). Experimental QoE evaluation of multicast video delivery over IEEE 802.11aa WLANs. IEEE Transactions on Mobile Computing.

    Article  Google Scholar 

  16. Gross, J., Klaue, J., Karl, H., & Wolisz, A. (2004). Cross-layer optimization of OFDM transmission systems for MPEG-4 video streaming. Elsevier Computer communications, 27(11), 1044–1055.

    Article  Google Scholar 

  17. Gupte, S., Mohandas, P.I.T., & Conrad, J.M. (2012). A survey of quadrotor unmanned aerial vehicles. In Proceedings of IEEE Southeastcon.

  18. Hanscom, A.F.B., & Bedford, M. (2013). Unmanned aircraft system (UAS) service demand 2015-2035: Literature review and projections of future usage. Tech. rep., U.S. department of transportation, John A. Volpe national transportation systems center,, last accessed Aug 2018.

  19. Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys & Tutorials, 18(4), 2624–2661.

    Article  Google Scholar 

  20. Kacianka, S., & Hellwagner, H. (2015). Adaptive video streaming for UAV networks. In Proceedings of ACM International Workshop on Mobile Video (MoVid).

  21. Kamerman, A., & Monteban, L. (1997). WaveLAN-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, 2(3), 118–133.

    Article  Google Scholar 

  22. Kofler, I., Kuschnig, R., & Hellwagner, H. (2011). In-network adaptation of H.264/SVC for HD video streaming over 802.11g networks. In Proceedings of International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV).

  23. Kuri, J., & Kasera, S.K. (1999). Reliable multicast in multi-access wireless LANs. In Proceedings of IEEE Conference on Computer Communications (INFOCOM.

  24. Li, Z., & Herfet, T. (2008). Beacon-driven leader based protocol over a GE channel for MAC layer multicast error control. International Journal of Communications, Network and System Sciences, 1(2), 144–153.

    Article  Google Scholar 

  25. Li, Z., & Herfet, T. (2009). MAC layer multicast error control for IPTV in wireless LANs. IEEE Transactions on Broadcasting, 55(2), 353–362.

    Article  Google Scholar 

  26. Lindeberg, M., Kristiansen, S., Plagemann, T., & Goebel, V. (2011). Challenges and techniques for video streaming over mobile ad-hoc networks. Springer Multimedia Systems, 17(1), 51–82.

    Article  Google Scholar 

  27. LinuxWireless Project (n.d.) Minstrel Specification., last accessed Aug 2018.

  28. Maraslis, K., Chatzimisios, P., & Boucouvalas, A. (2012). IEEE 802.11aa: Improvements on video transmission over wireless LANs. In Proceedings of IEEE International Conference on Communications (ICC).

  29. MikroTik (n.d.) MikroTik - R11e-5HnD., last accessed Aug 2018.

  30. Muzaffar, R., Vukadinovic, V., & Cavallaro, A. (2016a). Rate-adaptive multicast video streaming from teams of micro aerial vehicles. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA).

  31. Muzaffar, R., Yanmaz, E., Bettstetter, C., & Cavallaro, A. (2016b). Application-layer rate-adaptive multicast video streaming over 802.11 for mobile devices. In Proceedings of ACM Multimedia (ACMMM).

  32. Nafaa, A. (2007). Provisioning of multimedia services in 802.11-based networks: Facts and challenges. IEEE Wireless Communications, 14(5), 106–112.

    Article  Google Scholar 

  33. Netflix (n.d.) Video multi-method assessment fusion., last accessed Aug 2018.

  34. NVIDIA (n.d.) NVIDIA Jetson TK1 developer kit., last accessed Aug 2018.

  35. Paris, S., Facchi, N., Gringoli, F., & Capone, A. (2013). An innovative rate adaptation algorithm for multicast transmissions in wireless LANs. In Proceedings of IEEE Vehicular Technology Conference (VTC).

  36. Park, Y., Seok, Y., Choi, N., Choi, Y., & Bonnin, J.M. (2006). Rate-adaptive multimedia multicasting over IEEE 802.11 wireless LANs. In Proceedings of IEEE Consumer Communications and Networking Conference (CCNC).

  37. Piamrat, K., Ksentini, A., Bonnin, J.M., & Viho, C. (2009). Q-DRAM: QoE-based dynamic rate adaptation mechanism for multicast in wireless networks. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM).

  38. Quaritsch, M., Stojanovski, E., Bettstetter, C., Friedrich, G., Hellwagner, H., Rinner, B., Hofbaur, M., & Shah, M. (2008). Collaborative microdrones: Applications and research challenges. In Proceedings of ACM Autonomics.

  39. Salvador, P., Cominardi, L., Gringoli, F., & Serrano, P. (2013). A first implementation and evaluation of the IEEE 802.11aa group addressed transmission service. ACM SIGCOMM Computer Communication Review, 44(1), 35–41.

    Article  Google Scholar 

  40. Su, G. M., Su, X., Bai, Y., Wang, M., Vasilakos, A. V., & Wang, H. (2016). QoE in video streaming over wireless networks: Perspectives and research challenges. Springer Wireless Networks, 22(5), 1571–1593.

    Article  Google Scholar 

  41. Takai, M., Martin, J., & Bagrodia, R. (2001). Effects of wireless physical layer modeling in mobile ad-hoc networks. In Proceedings of ACM Mobile Ad-hoc Networking and Computing (MobiHoc).

  42. Team G (n.d.) Gstreamer framework., last accessed Aug 2018.

  43. Thierry, T., & Yongho, S. (2006). Practical rate-adaptive multicast schemes for multimedia over IEEE 802.11 WLANs. inria research report rr-5993., last accessed Aug 2018.

  44. Tourrilhes, J. (1998). Robust broadcast: Improving the reliability of broadcast transmissions on CSMA/CA. In Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).

  45. Vella, J. M., & Zammit, S. (2013). A survey of multicasting over wireless access networks. IEEE Communications Surveys & Tutorials, 15(2), 718–753.

    Article  Google Scholar 

  46. Yanmaz, E., Kuschnig, R., & Bettstetter, C. (2011). Channel measurements over 802.11a-based UAV-to-ground links. In IEEE Global Telecommunications Conference (GLOBECOM Wkshps).

  47. Yanmaz, E., Kuschnig, R., & Bettstetter, C. (2013). Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility. In Proceedings of IEEE Conference on Computer Communications (INFOCOM).

  48. Yin, W., Hu, P., Indulska, J., & Bialkowski, K. (2011). Performance of mac80211 rate control mechanisms. In Proceedings of ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM).

  49. Zhu, H., Li, M., Chlamtac, I., & Prabhakaran, B. (2004). A survey of quality of service in IEEE 802.11 networks. IEEE Wireless Communications, 11(4), 6–14.

    Article  Google Scholar 

Download references


The authors would like to thank Arke Vogell and Micha Rappaport for acting as pilots for the test scenarios.

Author information



Corresponding author

Correspondence to Raheeb Muzaffar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is funded by the security research programme KIRAS of the Federal Ministry for Transport, Innovation, and Technology (bmvit), Austria under the grant agreement n. 854747 (WatchDog) and ICT of the future programme (4th call) of the Austrian Research Promotion Agency (FFG) under grant agreement n. 855468 (ForestiMate). The support of the UK EPSRC project NCNR (EP/R02572X/1) and EACEA Agency of the European Commission under EMJD ICE FPA n. 2010-0012 is also acknowledged. The work of Evsen Yanmaz was performed while being employed at Lakeside Labs GmbH, Klagenfurt, Austria.

This is one of the several papers published in Autonomous Robots comprising Special Issue on Robot Communication Challenges: Real-World Problems, Systems, and Methods.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muzaffar, R., Yanmaz, E., Raffelsberger, C. et al. Live multicast video streaming from drones: an experimental study. Auton Robot 44, 75–91 (2020).

Download citation


  • Multicast video streaming
  • Rate-adaptation
  • IEEE 802.11
  • Drones