Advertisement

Autonomous Robots

, Volume 43, Issue 6, pp 1575–1590 | Cite as

Combined heuristic task and motion planning for bi-manual robots

  • Aliakbar AkbariEmail author
  • Fabien Lagriffoul
  • Jan Rosell
Article

Abstract

Planning efficiently at task and motion levels allows the setting of new challenges for robotic manipulation problems, like for instance constrained table-top problems for bi-manual robots. In this scope, the appropriate combination of task and motion planning levels plays an important role. Accordingly, a heuristic-based task and motion planning approach is proposed, in which the computation of the heuristic addresses a geometrically relaxed problem, i.e., it only reasons upon objects placements, grasp poses, and inverse kinematics solutions. Motion paths are evaluated lazily, i.e., only after an action has been selected by the heuristic. This reduces the number of calls to the motion planner, while backtracking is reduced because the heuristic captures most of the geometric constraints. The approach has been validated in simulation and on a real robot, with different classes of table-top manipulation problems. Empirical comparison with recent approaches solving similar problems is also reported, showing that the proposed approach results in significant improvement both in terms of planing time and success rate.

Keywords

Combined task and motion planning Robot manipulation Geometric reasoning Path planning 

Notes

References

  1. Akbari, A., Gillani, M., & Rosell, J. (2015a). Reasoning-based evaluation of manipulation actions for efficient task planning. In ROBOT2015: Second Iberian robotics conference. Berlin: Springer.Google Scholar
  2. Akbari, A., Gillani, M., & Rosell, J. (2015b). Task and motion planning using physics-based reasoning. In IEEE international conference on emerging technologies and factory automation.Google Scholar
  3. Akbari, A., Gillani, M., & Rosell, J. (2016). Task planning using physics-based heuristics on manipulation actions. In IEEE international conference on emerging technologies and factory automation.Google Scholar
  4. Azizi, V., Kimmel, A., Bekris, K., & Kapadia, M. (2017). Geometric reachability analysis for grasp planning in cluttered scenes for varying end-effectors. In 2017 13th IEEE conference on automation science and engineering (CASE), IEEE (pp. 764–769).Google Scholar
  5. Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial intelligence, 90(1), 281–300.CrossRefzbMATHGoogle Scholar
  6. Cambon, S., Alami, R., & Gravot, F. (2009). A hybrid approach to intricate motion, manipulation and task planning. The International Journal of Robotics Research, 28(1), 104–126.CrossRefGoogle Scholar
  7. Clarke, E. M., Grumberg, O., & Peled, D. (1999). Model checking. London: MIT Press.Google Scholar
  8. Dantam, N., Kingston, Z. K., Chaudhuri, S., & Kavraki, L. E. (2016). Incremental task and motion planning: A constraint-based approach. In Robotics: Science and systems.Google Scholar
  9. De Moura, L., & Bjørner, N. (2011). Satisfiability modulo theories: Introduction and applications. Communications of the ACM, 54(9), 69–77.CrossRefGoogle Scholar
  10. de Silva, L., Pandey, A. K., Gharbi, M., & Alami, R. (2013). Towards combining HTN planning and geometric task planning. In RSS workshop on combined robot motion planning and AI planning for practical applications.Google Scholar
  11. Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., & Nebel, B. (2012). Semantic attachments for domain-independent planning systems. In Towards service robots for everyday environments. Berlin: Springer (pp. 99–115).Google Scholar
  12. Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., & Uras, T. (2011). Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In IEEE international conference on robotics and automation robotics and automation (pp. 4575–4581).Google Scholar
  13. Erdem, E., Patoglu, V., & Schüller, P. (2016). A systematic analysis of levels of integration between high-level task planning and low-level feasibility checks. AI Communications, 29(2), 319–349.MathSciNetCrossRefGoogle Scholar
  14. Garrett, C. R., Lozano-Pérez, T., & Kaelbling, L. P. (2015). FFRob: An efficient heuristic for task and motion planning. In Algorithmic foundations of robotics XI. Berlin: Springer (pp. 179–195).Google Scholar
  15. Ghallab, M., Nau, D., & Traverso, P. (2004). Automated planning: Theory and practice. Amsterdam: Elsevier.zbMATHGoogle Scholar
  16. Hauser, K. (2014). The minimum constraint removal problem with three robotics applications. The International Journal of Robotics Research, 33(1), 5–17.MathSciNetCrossRefGoogle Scholar
  17. Hauser, K., & Latombe, J. C. (2010). Multi-modal motion planning in non-expansive spaces. The International Journal of Robotics Research, 29(7), 897–915.CrossRefzbMATHGoogle Scholar
  18. Hauser, K., Ng-Thow-Hing, V., & Gonzalez-Baños, H. (2010). Multi-modal motion planning for a humanoid robot manipulation task. In Robotics research. Berlin: Springer (pp. 307–317).Google Scholar
  19. He, K., Lahijanian, M., Kavraki, L. E., & Vardi, M. Y. (2015). Towards manipulation planning with temporal logic specifications. In 2015 IEEE international conference on robotics and automation (ICRA), IEEE (pp. 346–352).Google Scholar
  20. Hertle, A., & Nebel, B. (2017). Identifying good poses when doing your household chores: Creation and exploitation of inverse surface reachability maps. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE (pp. 6053–6058).Google Scholar
  21. Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.CrossRefzbMATHGoogle Scholar
  22. Kaelbling, L. P., & Lozano-Pérez, T. (2011). Hierarchical task and motion planning in the now. In IEEE international conference on robotics and automation robotics and automation (pp. 1470–1477).Google Scholar
  23. Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.CrossRefGoogle Scholar
  24. Kuffner, J. J., & LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path planning. In Proceedings of IEEE international conference on robotics and automation. ICRA’00, IEEE (Vol. 2, pp. 995–1001).Google Scholar
  25. Lagriffoul, F., & Andres, B. (2016). Combining task and motion planning: A culprit detection problem. The International Journal of Robotics Research, 35(8), 890–927.CrossRefGoogle Scholar
  26. Lagriffoul, F., Dimitrov, D., Saffiotti, A., & Karlsson, L. (2012). Constraint propagation on interval bounds for dealing with geometric backtracking. In 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE (pp. 957–964).Google Scholar
  27. Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A., & Karlsson, L. (2014). Efficiently combining task and motion planning using geometric constraints. The International Journal of Robotics Research, 33(14), 1726–1747.CrossRefGoogle Scholar
  28. Lagriffoul, F., Karlsson, L., Bidot, J., & Saffiotti, R. (2013). Combining task and motion planning is not always a good idea. In RSS workshop on combined robot motion planning.Google Scholar
  29. LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 20(5), 378–400.CrossRefGoogle Scholar
  30. Lifschitz, V. (2002). Answer set programming and plan generation. Artificial Intelligence, 138(1–2), 39–54.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Lozano-Perez, T. (1983). Spatial planning: A configuration space approach. IEEE Transactions on Computers, C–32, 108–120.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., & Wilkins, D. (1998). PDDL–The planning domain definition language. AIPS-98 Planning Competition Committee.Google Scholar
  33. Muhayyuddin, G., Akbari A., & Rosell, J. (2015). Ontological physics-based motion planning for manipulation. In IEEE international conference on emerging technologies and factory automation, IEEE.Google Scholar
  34. Muhayyuddin, G., Moll, M., Kavraki, L. E., & Rosell, J. (2018). Randomized physics-based motion planning for grasping in cluttered and uncertain environments. IEEE Robotics and Automation Letters, 3(2), 712–719.  https://doi.org/10.1109/LRA.2017.2783445.CrossRefGoogle Scholar
  35. Pednault, E. P. D. (1989). ADL: Exploring the middle ground between strips and the situation calculus. In Proceedings of the first international conference on principles of knowledge representation and reasoning. San Francisco: Morgan Kaufmann Publishers Inc. (pp. 324–332).Google Scholar
  36. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). ROS: An open-source robot operating system. In ICRA workshop on open source software (Vol. 3, pp. 5).Google Scholar
  37. Rosell, J., Pérez, A., Aliakbar, A., Muhayyuddin, G., Palomo, L., & García, N. (2014). The Kautham project: A teaching and research tool for robot motion planning. In IEEE international conference on emerging technologies and factory automation.Google Scholar
  38. Siméon, T., Laumond, J. P., Cortés, J., & Sahbani, A. (2004). Manipulation planning with probabilistic roadmaps. The International Journal of Robotics Research, 23(7–8), 729–746.CrossRefGoogle Scholar
  39. Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., & Abbeel, P. (2014). Combined task and motion planning through an extensible planner-independent interface layer. In IEEE international conference on robotics and automation robotics and automation (pp. 639–646).Google Scholar
  40. Stilman, M., & Kuffner, J. (2008). Planning among movable obstacles with artificial constraints. The International Journal of Robotics Research, 27(11–12), 1295–1307.CrossRefzbMATHGoogle Scholar
  41. Stilman, M., Schamburek, J. U., Kuffner, J., & Asfour, T. (2007). Manipulation planning among movable obstacles. In 2007 IEEE international conference on robotics and automation, IEEE (pp. 3327–3332).Google Scholar
  42. Sucan, I., Moll, M., Kavraki, L. E., et al. (2012). The open motion planning library. IEEE Robotics and Automation Magazine, 19(4), 72–82.CrossRefGoogle Scholar
  43. Zaplana, I., Claret, J. A., & Basanez, L. B. (2018). Análisis cinemático de robots manipuladores redundantes: Aplicación a los robots kuka lwr 4+ y abb yumi. Revista Iberoamericana de Automática e Informática industrial, 15(2), 192–202.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Industrial and Control Engineering (IOC)Universitat Politècnica de Catalunya (UPC)—Barcelona TechBarcelonaSpain
  2. 2.Örebro UniversitetetÖrebroSweden

Personalised recommendations