Advertisement

Autonomous Robots

, Volume 43, Issue 6, pp 1473–1488 | Cite as

Anticipative kinodynamic planning: multi-objective robot navigation in urban and dynamic environments

  • Gonzalo FerrerEmail author
  • Alberto Sanfeliu
Article
  • 273 Downloads

Abstract

This paper presents the anticipative kinodynamic planning (AKP) approach for robot navigation in urban environments, while satisfying both dynamic and nonholonomic constraints. Our main motivation is to minimize the impact that the robot is doing to the environment, i.e. other pedestrians, while successfully achieving a navigation goal. To this end, we require a better understanding of the environment, and thus, we propose to integrate seamlessly a human motion prediction algorithm into the planning algorithm. In addition, we are able to anticipate for each of the robot’s calculated paths or actions the corresponding people’s future trajectories, which is essential to reduce the impact to nearby pedestrians. Multi-objective cost functions are proposed and we describe a well-posed procedure to build joint cost functions. Plenty of simulations and real experiments have been carried out to demonstrate the success of the AKP, compared to other navigation approaches.

Keywords

Robot navigation Motion prediction Dynamic environments 

Notes

References

  1. Arechavaleta, G., Laumond, J.-P., Hicheur, H., & Berthoz, A. (2008). An optimality principle governing human walking. IEEE Transactions on Robotics, 24(1), 5–14.CrossRefGoogle Scholar
  2. Bahram, M., Wolf, A., Aeberhard, M., & Wollherr, D. (2014). A prediction-based reactive driving strategy for highly automated driving function on freeways. In Intelligent vehicles symposium (pp. 400–406). IEEE.Google Scholar
  3. Barraquand, J., & Latombe, J.-C. (1991). Robot motion planning: A distributed representation approach. The International Journal of Robotics Research, 10(6), 628–649.CrossRefGoogle Scholar
  4. Bennewitz, M., Burgard, W., Cielniak, G., & Thrun, S. (2005). Learning motion patterns of people for compliant robot motion. The International Journal of Robotics Research, 24(1), 31–48.CrossRefGoogle Scholar
  5. Brock, O., & Khatib, O. (1999). High-speed navigation using the global dynamic window approach. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 341–346).Google Scholar
  6. Chen, Y. F., Liu, M., Everett, M., & How, J. P. (2017). Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In Proceedings of the IEEE international conference on robotics and automation (pp. 285–292). IEEE.Google Scholar
  7. Deb, K. (2014). Multi-objective optimization. Search methodologies (pp. 403–449). New York: Springer.Google Scholar
  8. Ferrer, G., Garrell, A., Herrero, F., & Sanfeliu, A. (2017). Robot social-aware navigation framework to accompany people walking side-by-side. Autonomous Robots, 41(4), 775–793.Google Scholar
  9. Ferrer, G., Garrell, A., & Sanfeliu, A. (2013). Social-aware robot navigation in urban environments. In European conference on mobile robotics, ECMR (pp. 331–336).Google Scholar
  10. Ferrer, G., & Sanfeliu, A. (2014a). Behavior estimation for a complete framework of human motion prediction in crowded environments. In Proceedings of the IEEE international conference on robotics and automation (pp. 5940–5945).Google Scholar
  11. Ferrer, G., & Sanfeliu, A. (2014b). Proactive kinodynamic planning using the extended social force model and human motion prediction in urban environments. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1730–1735).Google Scholar
  12. Ferrer, G., & Sanfeliu, A. (2014c). Bayesian human motion intentionality prediction in urban environments. Pattern Recognition Letters, 44, 134–140.CrossRefGoogle Scholar
  13. Ferrer, G., & Sanfeliu, A. (2015). Multi-objective cost-to-go functions on robot navigation in dynamic environments. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3824–3829).Google Scholar
  14. Foka, A., & Trahanias, P. (2010). Probabilistic autonomous robot navigation in dynamic environments with human motion prediction. International Journal of Social Robotics, 2(1), 79–94.CrossRefGoogle Scholar
  15. Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. Robotics & Automation Magazine, 4(1), 23–33.CrossRefGoogle Scholar
  16. Fulgenzi, C., Spalanzani, A., & Laugier, C. (2009). Probabilistic motion planning among moving obstacles following typical motion patterns. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 4027–4033). IEEE.Google Scholar
  17. Gindele, T., Brechtel, S., Schroder, J., & Dillmann, R. (2009). Bayesian occupancy grid filter for dynamic environments using prior map knowledge. In Intelligent vehicles symposium (pp. 669–676). IEEE.Google Scholar
  18. Glassman, E., & Tedrake, R. (2010). A quadratic regulator-based heuristic for rapidly exploring state space. In Proceedings of the IEEE international conference on robotics and automation (pp. 5021–5028). IEEE.Google Scholar
  19. Helbing, D., & Molnár, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51(5), 4282.CrossRefGoogle Scholar
  20. Hsu, D., Kindel, R., Latombe, J.-C., & Rock, S. (2002). Randomized kinodynamic motion planning with moving obstacles. The International Journal of Robotics Research, 21(3), 233–255.CrossRefzbMATHGoogle Scholar
  21. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.CrossRefGoogle Scholar
  22. Kim, E., Choi, S., & Oh, S. (2015). Structured low-rank matrix approximation in Gaussian process regression for autonomous robot navigation. In Proceedings IEEE international conference on robotics and automation (pp. 69–74). IEEE.Google Scholar
  23. Koren, Y., & Borenstein, J. (1991). Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings IEEE international conference on robotics and automation (pp. 1398–1404). IEEE.Google Scholar
  24. Kretzschmar, H., Spies, M., Sprunk, C., & Burgard, W. (2016). Socially compliant mobile robot navigation via inverse reinforcement learning. The International Journal of Robotics Research, 35(11), 1289–1307.CrossRefGoogle Scholar
  25. Kuderer, M., Sprunk, C., Kretzschmar, H., & Burgard, W. (2014). Online generation of homotopically distinct navigation paths. In Proceedings of the IEEE international conference on robotics and automation (pp. 6462–6467).Google Scholar
  26. Kunz, B., & Stilman, M. (2014). Probabilistically complete kinodynamic planning for robot manipulators with acceleration limits. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3713–3719).Google Scholar
  27. LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 20(5), 378–400.CrossRefGoogle Scholar
  28. Luber, M., Spinello, L., Silva, J., & Arras, K. O. (2012). Socially-aware robot navigation: A learning approach. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 902–907).Google Scholar
  29. Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Moussaïd, M., Helbing, D., & Theraulaz, G. (2011). How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences, 108(17), 6884–6888.CrossRefGoogle Scholar
  31. Perez, A., Platt, R., Konidaris, G., Kaelbling, L., & Lozano-Perez, T. (2012). LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics. In Proceedings of the IEEE international conference on robotics and automation (pp. 2537–2542). IEEE.Google Scholar
  32. Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective sequential decision-making. Journal of Artificial Intelligence Research, 48, 67–113.MathSciNetCrossRefzbMATHGoogle Scholar
  33. Simmons, R. (1996). The curvature-velocity method for local obstacle avoidance. In Proceedings of the IEEE international conference on robotics and automation (Vol. 4, pp. 3375–3382).Google Scholar
  34. Sisbot, E. A., Marin-Urias, L. F., Alami, R., & Simeon, T. (2007). A human aware mobile robot motion planner. IEEE Transactions on Robotics, 23(5), 874–883.CrossRefGoogle Scholar
  35. Stachniss, C. & Burgard, W. (2002). An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic environments. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 508–513).Google Scholar
  36. Svenstrup, M., Bak, T., & Andersen, H. J. (2010). Trajectory planning for robots in dynamic human environments. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 4293–4298).Google Scholar
  37. Trautman, P., Ma, J., Murray, R. M., & Krause, A. (2013). Robot navigation in dense human crowds: The case for cooperation. In Proceedings of the IEEE international conference on robotics and automation (pp. 2145–2152).Google Scholar
  38. Van den Berg, J., Lin, M., & Manocha, D. (2008). Reciprocal velocity obstacles for real-time multi-agent navigation. In Proceedings of the IEEE international conference on robotics and automation (pp. 1928–1935). IEEE.Google Scholar
  39. Vasquez, D. (2016). Novel planning-based algorithms for human motion prediction. In IEEE conference on robotics and automation.Google Scholar
  40. Zanlungo, F., Ikeda, T., & Kanda, T. (2011). Social force model with explicit collision prediction. EPL (Europhysics Letters), 93(6), 68005.CrossRefGoogle Scholar
  41. Ziebart, B., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bagnell, J., Hebert, M., Dey, A., & Srinivasa, S. (2009). Planning-based prediction for pedestrians. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3931–3936).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CDISE DepartmentSkolkovo Institute of Science and TechnologyMoscowRussia
  2. 2.Institut de Robotica i InformaticaCSIC-UPCBarcelonaSpain

Personalised recommendations