Advertisement

Distributed configuration formation with modular robots using (sub)graph isomorphism-based approach

  • Ayan Dutta
  • Prithviraj Dasgupta
  • Carl Nelson
Article
  • 120 Downloads

Abstract

We consider the problem of configuration formation in modular robot systems where a set of modules that are initially in different configurations and located at different locations are required to assume appropriate positions so that they can get into a new, user-specified, target configuration. We propose a novel algorithm based on (sub)graph isomorphism, where the modules select locations or spots in the target configuration using a utility-based framework, while retaining their original configuration to the greatest extent possible, to reduce the time and energy required by the modules to disconnect and connect multiple times to form the target configuration. We have shown analytically that our proposed algorithm is complete and guarantees a Pareto-optimal allocation. Experimental simulations of our algorithm with different numbers of modules in different initial configurations and located initially at different locations, show that the planning time of our algorithm is nominal (order of msec for 100 modules). We have also compared our algorithm against a market-based allocation algorithm and shown that our proposed algorithm performs better in terms of time and number of messages exchanged.

Keywords

Modular robots Configuration formation Graph isomorphism 

References

  1. Ahmadzadeh, H., & Masehian, E. (2015). Modular robotic systems: Methods and algorithms for abstraction, planning, control, and synchronization. Artificial Intelligence, 223, 27–64.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Aho, A. V., & Hopcroft, J. E. (1974). The design and analysis of computer algorithms. Bengaluru: Pearson Education India.zbMATHGoogle Scholar
  3. Akutsu, T. (1993). A polynomial time algorithm for finding a largest common subgraph of almost trees of bounded degree. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 76(9), 1488–1493.Google Scholar
  4. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., & Beardsley, P. (2011). Multi-robot system for artistic pattern formation. In 2011 IEEE international conference on robotics and automation (ICRA) (pp. 4512–4517). IEEE.Google Scholar
  5. Asadpour, M., Sproewitz, A., Billard, A., Dillenbourg, P., & Ijspeert, A.J. (2008). Graph signature for self-reconfiguration planning. In IEEE/RSJ international conference on intelligent robots and systems, 2008. IROS 2008 (pp. 863–869). IEEE.Google Scholar
  6. Baca, J., Hossain, S., Dasgupta, P., Nelson, C. A., & Dutta, A. (2014). Modred: Hardware design and reconfiguration planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial exploration. Robotics and Autonomous Systems, 62(7), 1002–1015.CrossRefGoogle Scholar
  7. Baca, J., Woosley, B., Dasgupta, P., Dutta, A., & Nelson, C. (2016). Coordination of modular robots by means of topology discovery and leader election: Improvement of the locomotion case. In Distributed autonomous robotic systems (pp. 447–458). Berlin: Springer.Google Scholar
  8. Bertsekas, D. P. (1990). The auction algorithm for assignment and other network flow problems: A tutorial. Interfaces, 20(4), 133–149.CrossRefGoogle Scholar
  9. Brandes, U. (2001). A faster algorithm for betweenness centrality*. Journal of Mathematical Sociology, 25(2), 163–177.CrossRefzbMATHGoogle Scholar
  10. Chen, I. M., & Burdick, J. W. (1998). Enumerating the non-isomorphic assembly configurations of modular robotic systems. The International Journal of Robotics Research, 17(7), 702–719.CrossRefGoogle Scholar
  11. Chirikjian, G., Pamecha, A., & Ebert-Uphoff, I. (1996). Evaluating efficiency of self-reconfiguration in a class of modular robots. Journal of Field Robotics, 13(5), 317–338.zbMATHGoogle Scholar
  12. Cordella, L. P., Foggia, P., Sansone, C., & Vento, M. (2004). A (sub) graph isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 1367–1372.CrossRefGoogle Scholar
  13. Dasgupta, P., Ufimtsev, V., Nelson, C., & Hossain, S. (2012). Dynamic reconfiguration in modular robots using graph partitioning-based coalitions. In Proceedings of the 11th international conference on autonomous agents and multiagent systems-volume 1. International foundation for autonomous agents and multiagent systems (pp. 121–128).Google Scholar
  14. Davis, J. D., Sevimli, Y., Eldridge, B. R., & Chirikjian, G. S. (2016). Module design and functionally non-isomorphic configurations of the Hex-DMR II system. Journal of Mechanisms and Robotics, 8(5), 051,008.CrossRefGoogle Scholar
  15. Dutta, A., Chaudhuri, S.G., Datta, S., & Mukhopadhyaya, K. (2012). Circle formation by asynchronous fat robots with limited visibility. In Distributed Computing and Internet Technology (pp. 83–93). Berlin: Springer.Google Scholar
  16. Dutta, A., & Dasgupta, P. (2016). Simultaneous configuration formation and information collection by modular robotic systems. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 5216–5221).Google Scholar
  17. Dutta, A., Dasgupta, P., & Nelson, C. (2018). Distributed adaptive locomotion learning in modred modular self-reconfigurable robot. In Distributed Autonomous Robotic Systems (pp. 345–357). Cham: Springer.Google Scholar
  18. Enner, F., Rollinson, D., & Choset, H. (2013). Motion estimation of snake robots in straight pipes. In International conference on robotics and automation (pp. 5148–5153).Google Scholar
  19. Fitch, R., & Butler, Z. (2008). Million module march: Scalable locomotion for large self-reconfiguring robots. The International Journal of Robotics Research, 27(3–4), 331–343.CrossRefGoogle Scholar
  20. Hossain, S., Nelson, C. A., Chu, K. D., & Dasgupta, P. (2014). Kinematics and interfacing of modred: A self-healing capable, four-dof modular self-reconfigurable robot. JMR, 13, 1256.Google Scholar
  21. Hou, F., & Shen, W.M. (2008). Distributed, dynamic, and autonomous reconfiguration planning for chain-type self-reconfigurable robots. In IEEE international conference on robotics and automation, 2008. ICRA 2008 (pp. 3135–3140). IEEE.Google Scholar
  22. Hou, F., & Shen, W. M. (2014). Graph-based optimal reconfiguration planning for self-reconfigurable robots. Robotics and Autonomous Systems, 62(7), 1047–1059.CrossRefGoogle Scholar
  23. Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S., & Murata, S. (2004). Distributed adaptive locomotion by a modular robotic system, M-TRAN II. In Proceedings. 2004 IEEE/RSJ international conference on intelligent robots and systems, 2004.(IROS 2004) (Vols. 3, pp. 2370–2377). IEEE.Google Scholar
  24. Klavins, E. (2007). Programmable self-assembly. IEEE, Control Systems, 27(4), 43–56.CrossRefGoogle Scholar
  25. Knight, S., Rabideau, G., Chien, S., Engelhardt, B., & Sherwood, R. (2001). Casper: Space exploration through continuous planning. IEEE Intelligent Systems, 16(5), 70–75.CrossRefGoogle Scholar
  26. Kobler, J., Schöning, U., & Torán, J. (2012). The graph isomorphism problem: Its structural complexity. Berlin: Springer.zbMATHGoogle Scholar
  27. Kuhn, H. (1955). The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1–2), 83–97.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1–2), 83–97.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., & Murata, S. (2008). Distributed self-reconfiguration of M-TRAN III modular robotic system. The International Journal of Robotics Research, 27(3–4), 373–386.CrossRefGoogle Scholar
  30. Nelson, C.A., & Cipra, R.J. (2004). An algorithm for efficient self-reconfiguration of chain-type unit-modular robots. In ASME DETC, (pp. 1283–1291). New York City: American Society of Mechanical Engineers.Google Scholar
  31. Neubert, J., & Lipson, H. (2016). Soldercubes: A self-soldering self-reconfiguring modular robot system. Autonomous Robots, 40(1), 139–158.CrossRefGoogle Scholar
  32. Pamecha, A., Ebert-Uphoff, I., & Chirikjian, G. S. (1997). Useful metrics for modular robot motion planning. IEEE Transactions on Robotics and Automation, 13(4), 531–545.CrossRefzbMATHGoogle Scholar
  33. Park, M., Chitta, S., Teichman, A., & Yim, M. (2008). Automatic configuration recognition methods in modular robots. The International Journal of Robotics Research, 27(3–4), 403–421.CrossRefGoogle Scholar
  34. Raymond, J. W., & Willett, P. (2002). Maximum common subgraph isomorphism algorithms for the matching of chemical structures. Journal of Computer-Aided Molecular Design, 16(7), 521–533.CrossRefGoogle Scholar
  35. Reyner, S. W. (1977). An analysis of a good algorithm for the subtree problem. SIAM Journal on Computing, 6(4), 730–732.MathSciNetCrossRefzbMATHGoogle Scholar
  36. Rosa, M., Goldstein, S., Lee, P., Campbell, J., & Pillai, P. (2006). Scalable shape sculpturing via hole motions. In IEEE international conference on robotics and automation, (pp. 1462–1468). Orlando, FL.Google Scholar
  37. Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. Science, 345(6198), 795–799.CrossRefGoogle Scholar
  38. Shamir, R., & Tsur, D. (1997). Faster subtree isomorphism. In Proceedings of the Fifth Israeli symposium on theory of computing and systems, 1997 (pp. 126–131). IEEE.Google Scholar
  39. Stoy, K., Brandt, D., & Christensen, D. J. (2010). Self-reconfigurable robots: An introduction. Cambridge: The MIT Press.Google Scholar
  40. Suzuki, I., & Yamashita, M. (1997). Agreement on a common XY coordinate system by a group of mobile robots. In Intelligent Robots—Sensing, Modeling And Planning (pp. 305–321).Google Scholar
  41. Tolley, M.T., & Lipson, H. (2010). Fluidic manipulation for scalable stochastic 3D assembly of modular robots. In 2010 IEEE international conference on robotics and automation (ICRA) (pp. 2473–2478). IEEE.Google Scholar
  42. Ullmann, J. R. (1976). An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1), 31–42.MathSciNetCrossRefGoogle Scholar
  43. Werfel, J., & Nagpal, R. (2008). Three-dimensional construction with mobile robots and modular blocks. The International Journal of Robotics Research, 27(3–4), 463–479.CrossRefGoogle Scholar
  44. Yim, M., Shen, W. M., Salemi, B., Rus, D., Moll, M., Lipson, H., et al. (2007). Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1), 43–52.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ComputingUniversity of North FloridaJacksonvilleUSA
  2. 2.Computer Science DepartmentUniversity of Nebraska at OmahaOmahaUSA
  3. 3.Mechanical and Materials Engineering DepartmentUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations