Skip to main content
Log in

Integrated proximity, contact and force sensing using elastomer-embedded commodity proximity sensors

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We describe a combined proximity, contact and force (PCF) sensor based on a commodity infrared distance sensor embedded in a transparent elastomer with applications in robotic manipulation. Prior to contact, the sensor works as a distance sensor, whereas after contact the elastomer magnifies the near field of the proximity sensors letting the sensor interpret the indentation on elastomer as force. Contact occurs at the transition of proximity and force. We describe in detail the sensor design, its principle of operation and experimentally characterize the design parameters including polymer thickness, its mixing ratio, and emitter current of the infrared sensor. We also show that the sensor response has an inflection point at contact that is independent of an object’s surface properties, making it a robust detector for contact events. We finally demonstrate a series of use cases for the proposed PCF sensor, including (1) improving pre-grasp alignment, (2) determining contact event with objects, (3) obtaining simple 3D point cloud models of objects using both proximity and contact, and (4) registering self-generated point clouds to those from a RGB-D camera using a Baxter robot and Kinova Jaco arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. https://www.youtube.com/watch?v=QMzcKJtNkxA.

References

  • Ando, S., & Shinoda, H. (1995). Ultrasonic emission tactile sensing. IEEE Control Systems Magazine, 15(1), 61–69.

    Article  Google Scholar 

  • Armani, D., Liu, C., & Aluru, N. (1999). Re-configurable fluid circuits by PDMS elastomer micromachining. In 12th IEEE international conference on micro electro mechanical systems, 1999. MEMS’99 (pp. 222–227). IEEE.

  • Balek, D., & Kelley, R. (1985). Using gripper mounted infrared proximity sensors for robot feedback control. In Proceedings of the 1985 IEEE international conference on robotics and automation (Vol. 2, pp. 282–287). IEEE.

  • Benet, G., Blanes, F., Simó, J. E., & Pérez, P. (2002). Using infrared sensors for distance measurement in mobile robots. Robotics and Autonomous systems, 40(4), 255–266.

    Article  Google Scholar 

  • Bohg, J., Morales, A., Asfour, T., & Kragic, D. (2014). Data-driven grasp synthesis—A survey. IEEE Transactions on Robotics, 30(2), 289–309.

    Article  Google Scholar 

  • Born, M., & Wolf, E. (1999). Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Cai, D., Neyer, A., Kuckuk, R., & Heise, H. M. (2010). Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of pdms silicone rubber for characterization of polymer optical waveguide materials. Journal of Molecular Structure, 976(1), 274–281.

    Article  Google Scholar 

  • Cai, Z., Qiu, W., Shao, G., & Wang, W. (2013). A new fabrication method for all-PDMS waveguides. Sensors and Actuators A: Physical, 204, 44–47.

    Article  Google Scholar 

  • Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., & Dollar, A. M. (2015). Benchmarking in manipulation research: The YCB object and model set and benchmarking protocols. arXiv preprint arXiv:1502.03143.

  • Chen, K., Wo, A., & Chen, Y. (2006). Transmission spectrum of PDMS in 4–7 \(\upmu \)m mid-IR range for characterization of protein structure. NSTI-Nanotech, 2, 732–735.

    Google Scholar 

  • Chossat, J. B., Park, Y. L., Wood, R. J., & Duchaine, V. (2013). A soft strain sensor based on ionic and metal liquids. IEEE Sensors Journal, 13(9), 3405–3414.

    Article  Google Scholar 

  • Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo, A., Hauser, K., et al. (2016). Analysis and observations from the first amazon picking challenge. IEEE Transactions on Automation Science and Engineering.

  • Cox, R., Correll, N. (2017). Merging local and global 3D perception using contact sensing. In AAAI spring symposium on interactive multi-sensory object perception for embodied agents, Stanford, CA.

  • Dafle, N. C., Rodriguez, A., Paolini, R., Tang, B., Srinivasa, S. S., Erdmann, M., et al. (2014). Extrinsic dexterity: In-hand manipulation with external forces. In IEEE international conference on robotics and automation (ICRA), 2014 (pp. 1578–1585). IEEE.

  • Dahiya, R. S., Metta, G., Valle, M., & Sandini, G. (2010). Tactile sensing: From humans to humanoids. IEEE Transactions on Robotics, 26(1), 1–20.

    Article  Google Scholar 

  • Dahiya, R. S., Mittendorfer, P., Valle, M., Cheng, G., & Lumelsky, V. J. (2013). Directions toward effective utilization of tactile skin: A review. IEEE Sensors Journal, 13(11), 4121–4138.

    Article  Google Scholar 

  • Deimel, R., & Brock, O. (2014). A novel type of compliant, underactuated robotic hand for dexterous grasping. Robotics: science and systems, Berkeley, CA (pp. 1687–1692).

  • Dollar, A. M., Jentoft, L. P., Gao, J. H., & Howe, R. D. (2010). Contact sensing and grasping performance of compliant hands. Autonomous Robots, 28(1), 65–75.

    Article  Google Scholar 

  • Farrow, N., & Correll, N. (2015). A soft pneumatic actuator that can sense grasp and touch. In IEEE/RSJ international conference on intelligent robots and systems (IROS), 2015 (pp. 2317–2323). IEEE.

  • Farrow, N., Li, Y., & Correll, N. (2016). Morphological and embedded computation in a self-contained soft robotic hand. arxiv:1605.00354.

  • Farrow, N., McIntire, L., & Correll, N. (2017). Functionalized textiles for interactive soft robotics. In International conference on robotics and automation (ICRA).

  • Fearing, R. (1986). Simplified grasping and manipulation with dextrous robot hands. IEEE Journal on Robotics and Automation, 2(4), 188–195.

    Article  Google Scholar 

  • Fujimori, Y., Ohmura, Y., Harada, T., & Kuniyoshi, Y. (2009). Wearable motion capture suit with full-body tactile sensors. In IEEE international conference on robotics and automation, 2009. ICRA’09 (pp. 3186–3193). IEEE.

  • Glassner, A. S. (2014). Principles of digital image synthesis. Burlington: Morgan Kaufmann.

    Google Scholar 

  • Goger, D., Alagi, H., & Wörn, H. (2013). Tactile proximity sensors for robotic applications. In IEEE international conference on industrial technology (ICIT), 2013 (pp. 978–983). IEEE.

  • Gray, B. L., & Fearing, R. S. (1996). A surface micromachined microtactile sensor array. In Proceedings of the IEEE international conference on robotics and automation, 1996 (Vol. 1, pp. 1–6). IEEE.

  • Hellard, G., & Russell, R. A. (2002). A robust, sensitive and economical tactile sensor for a robotic manipulator. In Australian conference on robotics and automation, Citeseer (pp. 100–104).

  • Hsiao, K., Nangeroni, P., Huber, M., Saxena, A., & Ng, A. Y. (2009). Reactive grasping using optical proximity sensors. In IEEE international conference on robotics and automation, 2009. ICRA’09 (pp. 2098–2105). IEEE.

  • Hughes, D., & Correll, N. (2015). Texture recognition and localization in amorphous robotic skin. Bioinspiration & Biomimetics, 10(5), 055002.

    Article  Google Scholar 

  • Jiang, L., Low, K., Costa, J., Black, R. J., & Park, Y. L. (2015). Fiber optically sensorized multi-fingered robotic hand. In IEEE/RSJ international conference on intelligent robots and systems (IROS), 2015 (pp. 1763–1768). IEEE.

  • Konstantinova, J., Stilli, A., & Althoefer, K. (2015). Force and proximity fingertip sensor to enhance grasping perception. In IEEE/RSJ international conference on intelligent robots and systems (IROS), 2015 (pp. 2118–2123). IEEE.

  • Kröger, T., Finkemeyer, B., Winkelbach, S., Eble, L. O., Molkenstruck, S., & Wahl, F. M. (2008). A manipulator plays Jenga. IEEE Robotics & Automation Magazine, 15(3), 79–84.

    Article  Google Scholar 

  • Lancaster, S. (2004). A fuzzy logic controller for the application of skin pressure. In IEEE annual meeting of the fuzzy information, 2004. Processing NAFIPS ’04 (Vol. 2, pp. 686–689). https://doi.org/10.1109/NAFIPS.2004.1337384.

  • Lee, H. K., Chung, J., Chang, S. I., & Yoon, E. (2008). Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. Journal of Microelectromechanical Systems, 17(4), 934–942.

    Article  Google Scholar 

  • Ma, L., Ghafarianzadeh, M., Coleman, D., Correll, N., & Sibley, G. (2015). Simultaneous localization, mapping, and manipulation for unsupervised object discovery. In IEEE international conference on robotics and automation (pp. 1344–1351).

  • Maldonado, A., Alvarez, H., & Beetz, M. (2012). Improving robot manipulation through fingertip perception. In IEEE/RSJ international conference on intelligent robots and systems (IROS), 2012 (pp. 2947–2954). IEEE.

  • Mittendorfer, P., & Cheng, G. (2011). Humanoid multimodal tactile-sensing modules. IEEE Transactions on Robotics, 27(3), 401–410.

    Article  Google Scholar 

  • Mittendorfer, P., Yoshida, E., & Cheng, G. (2015). Realizing whole-body tactile interactions with a self-organizing, multi-modal artificial skin on a humanoid robot. Advanced Robotics, 29(1), 51–67.

    Article  Google Scholar 

  • Nakamura, K., & Shinoda, H. (2001). A tactile sensor instantaneously evaluating friction coefficients. In Transducers 01 Eurosensors XV (pp. 1402–1405). Springer.

  • Oberlin, J., Tellex, S. (2015). Learning to pick up objects through active exploration. In Joint IEEE international conference on development and learning and epigenetic robotics (ICDL-EpiRob), 2015 (pp. 252–253). IEEE.

  • Ohmura, Y., Kuniyoshi, Y., Nagakubo, A. (2006). Conformable and scalable tactile sensor skin for curved surfaces. In Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006 (pp. 1348–1353). IEEE.

  • Park, J. Y., Yoo, S. J., Lee, E. J., Lee, D. H., Kim, J. Y., & Lee, S. H. (2010). Increased poly (dimethylsiloxane) stiffness improves viability and morphology of mouse fibroblast cells. BioChip Journal, 4(3), 230–236.

    Article  Google Scholar 

  • Patel, R., & Correll, N. (2016). Integrated force and distance sensing using elastomer-embedded commodity proximity sensors. In Proceedings of robotics: Science and systems

  • Patel, R., Canardo Alastuey, J., & Correll, N. (2016). Improving grasp performance using in-hand proximity and force sensing. In International symposium on experimental robotics (ISER), Tokyo, Japan.

  • Patel, R., Cox, R., Romero, B., & Correll, N. (2017). Improving grasp performance using in-hand proximity and contact sensing. arXiv preprint arXiv:1701.06071.

  • Romano, J. M., Hsiao, K., Niemeyer, G., Chitta, S., & Kuchenbecker, K. J. (2011). Human-inspired robotic grasp control with tactile sensing. IEEE Transactions on Robotics, 27(6), 1067–1079.

    Article  Google Scholar 

  • Rossiter, J., & Mukai, T. (2006). An led-based tactile sensor for multi-sensing over large areas. In 5th IEEE conference on sensors, 2006 (pp. 835–838). IEEE.

  • Tenzer, Y., Jentoft, L. P., & Howe, R. D. (2014). The feel of mems barometers: Inexpensive and easily customized tactile array sensors. IEEE Robotics & Automation Magazine, 21(3), 89–95.

    Article  Google Scholar 

  • Wang, L., & Beebe, D. J. (2002). Characterization of a silicon-based shear-force sensor on human subjects. IEEE Transactions on Biomedical Engineering, 49(11), 1340–1347.

    Article  Google Scholar 

  • Zhang, Z. F., Tao, X. M., Zhang, H. P., & Zhu, B. (2013). Soft fiber optic sensors for precision measurement of shear stress and pressure. IEEE Sensors Journal, 13(5), 1478–1482.

    Article  Google Scholar 

  • Zhu, F., & Spronck, J. (1992). A capacitive tactile sensor for shear and normal force measurements. Sensors and Actuators A: Physical, 31(1), 115–120.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Airforce Office of Scientific Research. We are grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Correll.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Autonomous Robots comprising the “Special Issue on Robotics Science and Systems”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R., Cox, R. & Correll, N. Integrated proximity, contact and force sensing using elastomer-embedded commodity proximity sensors. Auton Robot 42, 1443–1458 (2018). https://doi.org/10.1007/s10514-018-9751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9751-4

Keywords

Navigation