Advertisement

Simultaneous learning of hierarchy and primitives for complex robot tasks

  • Anahita Mohseni-Kabir
  • Changshuo Li
  • Victoria Wu
  • Daniel Miller
  • Benjamin Hylak
  • Sonia Chernova
  • Dmitry Berenson
  • Candace Sidner
  • Charles Rich
Article
  • 140 Downloads

Abstract

We present a new interaction paradigm for robot learning from demonstration, called simultaneous learning of hierarchy and primitives (SLHAP), in which information about hierarchy and primitives is naturally interleaved in a single, coherent demonstration session. A key innovation in the new paradigm is the human demonstrator’s narration of primitives as he executes them, which allows the system to identify the boundaries between primitives. Hierarchy is represented using hierarchical task networks; motion planning constraints on the primitives are represented using task space regions. We implemented SLHAP on an autonomous robot and produced an interaction video illustrating its effectiveness learning a complex task with five levels of hierarchy and eight types of primitives. The underlying algorithms which make SLHAP possible are described and evaluated.

Keywords

Learning from demonstration Hierarchical task network Task space region Motion planning Tire rotation 

Supplementary material

10514_2018_9749_MOESM1_ESM.mp4 (5.1 mb)
Supplementary material 1 (mp4 5217 KB)

References

  1. Akgun, B., Cakmak, M., Jiang, K., & Thomaz, A. L. (2012). Keyframe-based learning from demonstration. International Journal of Social Robotics, 4(4), 343–355.CrossRefGoogle Scholar
  2. Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.CrossRefGoogle Scholar
  3. Baisero, A., Mollard, Y., Lopes, M., Toussaint, M., & Lutkebohle, I. (2015). Temporal segmentation of pair-wise interaction phases in sequential manipulation demonstrations. In IROS.Google Scholar
  4. Berenson, D., Srinivasa, S. S., & Kuffner, J. (2011). Task space regions: A framework for pose-constrained manipulation planning. The International Journal of Robotics Research, 30, 1435–1460.CrossRefGoogle Scholar
  5. Cakmak, M., Chao, C., & Thomaz, A. L. (2010). Designing interactions for robot active learners. IEEE Transactions on Autonomous Mental Development, 2(2), 108–118.CrossRefGoogle Scholar
  6. Cakmak, M., & Thomaz, A. L. (2012). Designing robot learners that ask good questions. In ACM/IEEE international conference on human–robot interaction (pp. 17–24). ACM.Google Scholar
  7. Calinon, S., Guenter, F., & Billard, A. (2007). On learning, representing, and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(2), 286–298.CrossRefGoogle Scholar
  8. Chernova, S., & Thomaz, A. L. (2014). Robot learning from human teachers. Synthesis Lectures on Artificial Intelligence and Machine Learning, 8(3), 1–121.CrossRefGoogle Scholar
  9. Chiappa, S., & Peters, J. R. (2010). Movement extraction by detecting dynamics switches and repetitions. In Advances in neural information processing systems (pp. 388–396).Google Scholar
  10. Erol, K., Hendler, J., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. AAAI, 94, 1123–1128.zbMATHGoogle Scholar
  11. Garland, A., Ryall, K., & Rich, C. (2001). Learning hierarchical task models by defining and refining examples. In International conference on knowledge capture (pp. 44–51).Google Scholar
  12. Hayes, B., & Scassellati, B. (2014). Discovering task constraints through observation and active learning. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  13. Hsu, D., Jiang, T., Reif, J., & Sun, Z. (2003). The bridge test for sampling narrow passages with probabilistic roadmap planners. In ICRA.Google Scholar
  14. Huffman, S. B., & Laird, J. E. (1995). Flexibly instructable agents. Journal of Artificial Intelligence Research, 3, 271–324.zbMATHGoogle Scholar
  15. Konidaris, G. (2016). Constructing abstraction hierarchies using a skill-symbol loop. In IJCAI: Proceedings of the conference (p. 1648), NIH Public Access.Google Scholar
  16. Kulic, D., Lee, D., Ott, C., & Nakamura, Y. (2008). Incremental learning of full body motion primitives for humanoid robots. In 8th IEEE-RAS international conference on humanoid robots, 2008. Humanoids 2008 (pp. 326–332). IEEE.Google Scholar
  17. Levy-leduc, C., & Harchaoui, Z. (2008). Catching change-points with lasso. In Advances in neural information processing systems (pp. 617–624).Google Scholar
  18. Li, C., & Berenson, D. (2016). Learning object orientation constraints and guiding constraints for narrow passages from one demonstration. In International symposium on experimental robotics.Google Scholar
  19. Minnen, D., Starner, T., Essa, I. A., & Isbell, C. L, Jr. (2007). Improving activity discovery with automatic neighborhood estimation. IJCAI, 7, 2814–2819.Google Scholar
  20. Mohammad, Y., & Nishida, T. (2015). Exact multi-length scale and mean invariant motif discovery. Applied Intelligence, 44, 322–339.CrossRefGoogle Scholar
  21. Mohan, S., & Laird, J. E. (2011). Towards situated, interactive, instructable agents in a cognitive architecture. In AAAI Fall symposium series.Google Scholar
  22. Mohseni-Kabir, A., Chernova, S., & Rich, C. (2014). Collaborative learning of hierarchical task networks from demonstration and instruction. In Workshop on human–robot collaboration for industrial manufacturing, robotics science and systems, Berkeley, CA.Google Scholar
  23. Mohseni-Kabir, A., Rich, C., Chernova, S., Sidner, C. L., & Miller, D. (2015). Interactive hierarchical task learning from a single demonstration. In Proceedings of the tenth annual ACM/IEEE international conference on human–robot interaction (pp. 205–212). ACM.Google Scholar
  24. Mohseni-Kabir, A., Wu, V., Chernova, S., & Rich, C. (2016). What’s in a primitive? identifying reusable motion trajectories in narrated demonstrations. In IEEE international symposium on robot and human interactive communication (ROMAN).Google Scholar
  25. Mollard, Y., Munzer, T., Baisero, A., Toussaint, M., & Lopes, M. (2015). Robot programming from demonstration, feedback and transfer. In IROS.Google Scholar
  26. Niekum, S., Osentoski, S., Konidaris, G., Chitta, S., Marthi, B., & Barto, A. G. (2015). Learning grounded finite-state representations from unstructured demonstrations. The International Journal of Robotics Research, 34(2), 131–157.CrossRefGoogle Scholar
  27. Oates, T. (2002). Peruse: An unsupervised algorithm for finding recurring patterns in time series. In 2002 IEEE international conference on data mining, 2002. ICDM 2003. Proceedings (pp. 330–337). IEEE.Google Scholar
  28. Pardowitz, M., Knoop, S., Dillmann, R., & Zollner, R. (2007). Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(2), 322–332.CrossRefGoogle Scholar
  29. Phillips, M., Hwang, V., Chitta, S., & Likhachev, M. (2016). Learning to plan for constrained manipulation from demonstrations. Autonomous Robots, 40(1), 109–124.CrossRefGoogle Scholar
  30. Rich, C. (2009). Building task-based user interfaces with ANSI/CEA-2018. Computer, 42(8), 20–27.CrossRefGoogle Scholar
  31. Rich, C., & Sidner, C. (2012). Using collaborative discourse theory to partially automate dialogue tree authoring. In Intelligent virtual agents (pp. 327–340). Springer.Google Scholar
  32. Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1), 259–268.MathSciNetCrossRefzbMATHGoogle Scholar
  33. Rybski, P. E., Yoon, K., Stolarz, J., & Veloso, M. M. (2007). Interactive robot task training through dialog and demonstration. In ACM/IEEE international conference on human–robot interaction (pp. 49–56).Google Scholar
  34. Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A. P., et al. (2014). Grammarviz 2.0: A tool for grammar-based pattern discovery in time series. In Machine learning and knowledge discovery in databases (pp. 468–472). Springer.Google Scholar
  35. Ye, G., & Alterovitz, R. (2011). Demonstration-guided motion planning. In ISRR.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Worcester Polytechnic InstituteWorcesterUSA
  3. 3.Georgia Institute of TechnologyAtlantaUSA
  4. 4.University of MichiganAnn ArborUSA

Personalised recommendations