Design of a terrain adaptive wheeled robot for human-orientated environments

Abstract

Domestic and human-centered environments pose many practical challenges for service robots, especially those that must perform a diverse range of tasks. Existing robot morphologies have typically failed to incorporate the physical practicality and terrain adaptability needed to achieve high behavioral diversity in these spaces, as the most suitable configurations for certain tasks/behaviors are often highly unsuitable for others. This paper presents the development of a novel wheeled robot morphology that has been designed to possess the physical characteristics necessary to exploit human-centered environments, while also attaining the terrain adaptability to perform demanding locomotive tasks such as crevice crossing and step climbing. The design of a demonstrator embodiment is presented and discussed. Through simulation and real-world testing, the effectiveness of the prototype is evaluated. Finally, several design insights and lessons learned are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    The ability of the proposed morphology to climb stairs has been theoretically validated. However, the dynamic and control requirements to achieve this were considered outside the scope of this work.

References

  1. Arola, R. A., Miyata, E., Sturos, J. A., & Steinhilb, H. (1981). Felling and bunching small timber on steep slopes. Technical reports on U.S.D.A. Forest Service.

  2. Bicchi, A., & Tonietti, G. (2004). Fast and “soft-arm” tactics: Dependability in human-friendly robots. IEEE Robotics and Automation Magazine, 11(2), 22–33. https://doi.org/10.1109/MRA.2004.1310939.

    Article  Google Scholar 

  3. Boblan, I., & Schulz, A. (2010). A humanoid muscle robot torso with biologically inspired construction. In Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK) (pp. 1–6).

  4. Bohren, J., Rusu, R., Jones, E., Marder-Eppstein, E., Pantofaru, C., Wise, M., Mosenlechner, L., Meeussen, W., & Holzer, S. (2011). Towards autonomous robotic butlers: Lessons learned with the pr2. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 5568–5575). https://doi.org/10.1109/ICRA.2011.5980058.

  5. Bongard, J., & Pfeifer, R. (2006). How the body shapes the way we think: A new version of intelligence. Cambridge: The MIT Press.

    Google Scholar 

  6. Boston Dynamics (2017). Handle. https://www.bostondynamics.com/handle.

  7. Brooks, R. A. (1991). Intelligence without reason. In Proceedings of the 12th international joint conference on artificial intelligence - volume 1, IJCAI’91 (pp. 569–595). San Francisco, CA: Morgan Kaufmann Publishers Inc. http://dl.acm.org/citation.cfm?id=1631171.1631258.

  8. Brown Engineering Co. (1972). A design guide for home safety. Technical reports, U.S. Department of Housing and Urban Development. http://books.google.ie/books?id=zofRnQEACAAJ.

  9. Chou, C. P., & Hannaford, B. (1996). Measurement and modelling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation, 12(1), 90–102. https://doi.org/10.1109/70.481753.

    Article  Google Scholar 

  10. Cohen, H. H., & Abele, J. R. (2008). Chapter 10: Fall injury information (p. 112). http://www.ncbi.nlm.nih.gov/books/NBK2653/.

  11. Connette, C. P., Parlitz, C., Graf, B., Hägele, M., & Verl, A. (2008). The mobility concept of Care-O-bot 3. In Proceedings of the 39th ISR (International Symposium on Robotics) (Vol. 15).

  12. Cullinan, M. F., Bourke, E., Kelly, K., & McGinn, C. (2017). A McKibben type sleeve pneumatic muscle and integrated mechanism for improved stroke length. Journal of Mechanisms and Robotics, 9(1), 011,013. https://doi.org/10.1115/1.4035496.

    Article  Google Scholar 

  13. Dallali, H., Mosadeghzad, M., Medrano-Cerda, G., Loc, V. G., Tsagarakis, N., & Caldwell, D., et al. (2013). Designing a high performance humanoid robot based on dynamic simulation. In European Modelling Symposium (pp. 359–364). https://doi.org/10.1109/EMS.2013.61.

  14. Edsinger, A. L. (2007). Robot manipulation in human environments. Ph.D. Thesis. 99.2007/edsinger.thesis.

  15. Endo, G., & Hirose, S. (2012). Study on roller-walker improvement of locomotive efficiency of quadruped robots by passive wheels. Advanced Robotics, 26(8–9), 969–988. https://doi.org/10.1163/156855312X633066.

    Google Scholar 

  16. Falconer, J. (2013). CMU’s CHIMP Humanoid Robot Moves Like a Tank. IEEE Spectrum. https://spectrum.ieee.org/automaton/robotics/humanoids/cmu-chimp-humanoid-robot-moves-like-a-tank.

  17. Figliolini, G., & Ceccarelli, M. (1999). Walking programming for an electropneumatic biped robot. Mechatronics, 9, 941–963. https://doi.org/10.1016/S0957-4158(99)00040-9.

    Article  Google Scholar 

  18. Figliolini, G., & Ceccarelli, M. (2001). Climbing stairs with EP-WAR2 biped robot. In Proceedings of the IEEE Conference of Robotics and Automation (ICRA ’01) (Vol. 4, pp. 4116–4121). https://doi.org/10.1109/ROBOT.2001.933261.

  19. Fuchs, M., Borst, C., Giordano, P. R., Baumann, A., Kraemer, E., Langwald, J., Gruber, R., Seitz, N., Plank, G., Kunze, K., Burger, R., Schmidt, F., Wimboeck, T., & Hirzinger, G. (2009). Rollin’ justin-design considerations and realization of a mobile platform for a humanoid upper body. In Robotics and automation, 2009. ICRA ’09. IEEE International Conference on (pp. 4131–4137). https://doi.org/10.1109/ROBOT.2009.5152464.

  20. Garcia, E., Estremera, J., & de Santos, P. G. (2002). A classification of stability margins for walking robots. In Proceedings of the 2002 International Symposium on Climbing and Walking Robots (Vol. 20).

  21. Griffiths, I. W. (2006). Chapter 4: Equilibrium (pp. 94–100). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  22. Guizzo, E., & Ackerman, E. (2015). The hard lessons of darpa’s robotics challenge [news]. IEEE Spectrum, 52(8), 11–13.

    Article  Google Scholar 

  23. Haddadin, S., Albu-Schaffer, a, & Hirzinger, G. (2009). Requirements for safe robots: Measurements, analysis and new insights. The International Journal of Robotics Research, 28(11–12), 1507–1527. https://doi.org/10.1177/0278364909343970.

    Article  Google Scholar 

  24. Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015). Mobile manipulation and mobility as manipulation–design and algorithms of RoboSimian. Journal of Field Robotics, 32, 255–274. https://doi.org/10.1002/rob.21566.

    Article  Google Scholar 

  25. Henriksen, K., Battles, J., & Keyes, M. (2008). Home health care patients and safety hazards in the home: Preliminary findings. Advances in Patient Safety: New Directions and Alternative Approaches, 1, 1–16. http://www.ncbi.nlm.nih.gov/books/NBK43619/.

  26. Hinds, P. J., Roberts, T. L., & Jones, H. (2004). Whose job is it anyway? A study of human–robot interaction in a collaborative task. Human-Computer Interaction, 19(1), 151–181.

    Article  Google Scholar 

  27. Hirose, S. (1996). Design and implementation of intelligent mobile robots: practical aspects. In Industrial electronics, control, and instrumentation, Proceedings of the 1996 IEEE IECON 22nd International Conference on (Vol. 1, pp. LXIV–LXXIV). IEEE.

  28. Hobbelen, D., de Boer, T., & Wisse, M. (2008). System overview of bipedal robots flame and tulip: Tailor-made for limit cycle walking. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’08). https://doi.org/10.1109/IROS.2008.4650728.

  29. Hutcheson, T., & Pratt, J. (2008). Reconfigurable balancing robot and method for dynamically transitioning between statically stable mode and dynamically balanced mode. https://www.google.ch/patents/US20080105481. US Patent App. 11/591,925.

  30. Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M. A., Remy, C. D., & Siegwart, R. (2012). Starleth: A compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: 15th International Conference on Climbing and Walking Robot-CLAWAR 2012, EPFL-CONF-181042.

  31. Jackson, P. L., & Cohen, H. (1995). An in-depth investigation of 40 stairway accidents and the stair safety literature. Journal of Safety Research, 26(3), 151–159. https://doi.org/10.1016/0022-4375(95)00014-H.

    Article  Google Scholar 

  32. Ju, Z., Yang, C., & Ma, H. (2014). Kinematics modeling and experimental verification of baxter robot. In Control Conference (CCC), 2014 33rd Chinese (pp. 8518–8523). IEEE.

  33. Kiesler, S. (2005). Fostering common ground in human–robot interaction. In ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication (pp. 729–734). https://doi.org/10.1109/ROMAN.2005.1513866.

  34. Kim, J. H., Yang, J., & Abdel-Malek, K. (2008). A novel formulation for determining joint constraint loads during optimal dynamic motion of redundant manipulators in DH representation. Multibody System Dynamics, 19(4), 427–451.

    MathSciNet  Article  MATH  Google Scholar 

  35. Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on (Vol. 3, pp. 2149–2154). https://doi.org/10.1109/IROS.2004.1389727.

  36. Kuindersma, S., Hannigan, E., Ruiken, D., & Grupen, R. (2009). Dexterous mobility with the uBot-5 mobile manipulator. In Proceedings of the 14th International Conference on Advanced Robotics (ICAR) (pp. 1–7).

  37. Laffont, I., Guillon, B., Fermanian, C., Pouillot, S., Even-Schneider, A., Boyer, F., et al. (2008). Evaluation of a stair-climbing power wheelchair in 25 people with tetraplegia. Archives of Physical Medicine and Rehabilitation, 89(10), 1958–1964.

    Article  Google Scholar 

  38. Leidner, D., Borst, C., Dietrich, A., Beetz, M., & Albu-Schaffer, A. (2015). Classifying compliant manipulation tasks for automated planning in robotics. In IEEE International Conference on Intelligent Robots and Systems (pp. 1769–1776). https://doi.org/10.1109/IROS.2015.7353607.

  39. Martens, J., & Newman, W. (1994). Stabilization of a mobile robot climbing stairs. In Proceedings of IEEE International Conf. on Robotics and Automation (Vol. 3, pp. 2501–2507). https://doi.org/10.1109/ROBOT.1994.351135.

  40. Martens, J. D., & Newman, W. S. (1994). Stabilization of a mobile robot climbing stairs. In Robotics and Automation, 1994. Proceedings, 1994 IEEE International Conference on (pp. 2501–2507). IEEE.

  41. McCarthy, E. (2007). Israeli military robot is built to kill (mini-uzi included). Popular Mechanics. https://www.reuters.com/article/us-israel-robot/israel-unveils-portable-hunter-killer-robot-idUSL0848163620070308.

  42. McGinn, C., Kelly, K., & Holland, D. (2014). Towards the design of a new humanoid robot for domestic applications. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA).

  43. McNeill, A. R. (1988). Elastic mechanisms in animal movement. Cambridge: Cambridge University Press.

    Google Scholar 

  44. Nelson, G., Saunders, A., Neville, N., Swilling, B., Bondaryk, J., Billings, D., et al. (2012). Petman: A humanoid robot for testing chemical protective clothing. Journal of the Robotics Society of Japan, 30, 372–377.

    Article  Google Scholar 

  45. Novoplanski, A. (2013). Deformable wheel assembly. https://www.google.com/patents/US20130033099.

  46. Novoplanski, A. (2014). Tire for surface vehicle. https://www.google.com/patents/US20140158268.

  47. Palmer, M. E., Miller, D. B., & Blackwell, T. L. (2009). An evolved neural controller for bipedal walking: Transitioning from simulator to hardware. In Proceedings of IROS 2009 Workshop on Exploring New Horizons in Evolutionary Design of Robots (pp. 51–58).

  48. Pfeifer, R., Marques, H. G., & Iida, F. (2013). Soft robotics: The next generation of intelligent machines. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI ’13 (pp. 5–11). AAAI Press. http://dl.acm.org/citation.cfm?id=2540128.2540131.

  49. Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuators. In Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, (Vol. 1, pp. 399–406).

  50. Raibert, M., Blankespoor, K., Nelson, G., & Playter, R. (2008). Bigdog, the rough-terrain quaduped robot. IFAC Proceedings Volumes, 41(2), 10822–10825. https://doi.org/10.3182/20080706-5-KR-1001.01833.

  51. Rojas, R. (2006). A short history of omnidirectional wheels. http://robocup.mi.fu-berlin.de/buch/shortomni.pdf.

  52. Ruiken, D., Lanighan, M., & Grupen, R. (2013). Postural modes and control for dexterous mobile manipulation: The umass ubot concept. In Proc. of the 13th IEEE-RAS international conference on humanoid robots.

  53. Semini, C., Tsagarakis, N. G., Vanderborght, B., Yang, Y., & Caldwell, D. G. (2011). HyQ-Hydraulically actuated quadruped robot: Hopping leg prototype. In Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on (pp. 593–599). https://doi.org/10.1109/BIOROB.2008.4762913

  54. Shadow Robotics Company. (2013). Shadow dexterous hand technical specification. http://www.shadowrobot.com/wp-content/uploads/shadow_dexterous_hand_technical_specification_E1_20130101.pdf

  55. Sheldon, J. (1960). On the natural history of falls in old age. British Medical Journal. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2098310/.

  56. Siegwart, R., & Nourbakhsh, I. (2004). Chap. 2. The MIT Press, (p. 30).

  57. Spampinato, G., & Muscato, G. (2006). DIEES biped robot: A bio-inspired pneumatic platform for human locomotion analysis and stiffness control (pp. 478–483).

  58. Stilman, M., Olson, J., & Gloss, W. (2010). Golem krang: Dynamically stable humanoid robot for mobile manipulation. In Robotics and Automation (ICRA), 2010 IEEE International Conference on (pp. 3304–3309).

  59. Sugahara, Y., Yonezawa, N., & Kosuge, K. (2010). A novel stair-climbing wheelchair with transformable wheeled four-bar linkages. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on (pp. 3333–3339). IEEE.

  60. Tao, W., Ou, Y., & Feng, H. (2012). Research on dynamics and stability in the stairs-climbing of a tracked mobile robot. International Journal of Advanced Robotic Systems, 9(4), 146.

    Article  Google Scholar 

  61. The Building Regulations. (2010). Part K: Protection of falling, impact and collisions. https://www.gov.uk/government/publications/protection-from-falling-collision-and-impact-approved-document-k.

  62. Theobald, D. (2010). Mobile extraction-assist robot. http://www.google.com/patents/US7719222.

  63. Tilley, A. R. (2001). The measure of man and woman: Human factors in design. Hoboken: Wiley.

    Google Scholar 

  64. Uustal, H., & Minkel, J. L. (2004). Study of the independence ibot 3000 mobility system: An innovative power mobility device, during use in community environments. Archives of Physical Medicine and Rehabilitation, 85(12), 2002–2010.

    Article  Google Scholar 

  65. Van Ham, R., Verrelst, B., Daerden, F., & Lefeber, D. (2003). Pressure control with on-off valves of pleated pneumatic artificial muscles in a modular one-dimensional rotational joint. In International conference on humanoid robots (p. 35).

  66. Verrelst, B., Van Ham, R., Vanderborght, B., Daerden, F., Lefeber, D., & Vermeulen, J. (2004). Lucy, a bipedal walking robot with pneumatic artificial muscles. Autonomous Robots, 18(2), 201–213.

    Article  Google Scholar 

  67. Wong, J. Y., & Huang, W. (2006). "Wheels vs. Tracks"–A fundamental evaluation from the traction perspective. Journal of Terramechanics, 43(1), 27–42.

    Article  Google Scholar 

  68. Zinn, M., Khatib, O., Roth, B., & Salisbury, J. K. (2004). Playing it safe: Dependability in human-friendly robots. IEEE Robotics and Automation Magazine, 11(2), 12–21. https://doi.org/10.1109/MRA.2004.1310938.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cian Donovan, Adam McCreevey, George Walsh and Mark Culleton for their efforts in developing and testing the robot presented in this work. We would also like to thank Iarnroid Eireann for allowing us to conduct testing on their trains.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Conor McGinn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 4898 KB)

Supplementary material 2 (mp4 5473 KB)

Supplementary material 3 (mp4 4583 KB)

Supplementary material 4 (mp4 20945 KB)

Supplementary material 5 (mp4 27167 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McGinn, C., Cullinan, M.F., Otubela, M. et al. Design of a terrain adaptive wheeled robot for human-orientated environments. Auton Robot 43, 63–78 (2019). https://doi.org/10.1007/s10514-018-9701-1

Download citation

Keywords

  • Wheeled robot
  • Pneumatic artificial muscle
  • Service robot