Autonomous Robots

, Volume 42, Issue 1, pp 147–158 | Cite as

Energetic analysis and optimization of a MACCEPA actuator in an ankle prosthesis

Energetic evaluation of the CYBERLEGs alpha-prosthesis variable stiffness actuator during a realistic load cycle
  • Joost GeeromsEmail author
  • Louis Flynn
  • Rene Jimenez-Fabian
  • Bram Vanderborght
  • Dirk Lefeber


The use of active prostheses for lower limb replacement brings new challenges like power optimization, energy efficiency and autonomy. The use of series and parallel elasticity is often explored to reduce the necessary motor power but this does not necessarily have a positive influence on the energy consumption of the prosthesis. This paper presents the experiments performed with the variable compliance actuator used in an active ankle prosthesis and the electromechanical model of this actuator. The results show that the measurements can be matched using the model, and this model can thus be used to optimize the energy efficiency of the actuator. Simulations show that the electrical efficiency can be increased by 10% compared to parameters selected by an optimization method that only takes mechanical properties into account.


Actuator Energy efficiency CYBERLEGs Ankle Prosthesis Human gait Series elasticity 



The first author is funded by a Ph.D. grant from Flanders Innovation & Entrepreneurship (VLAIO). This work has been partially funded by the European Commissions 7th Framework Program as part of the CYBERLEGs project under Grant No. 287894, CYBERLEGs PlusPlus (H2020-ICT-2016-1 Grant Agreement #731931) and by the Research Foundation-Flanders (FWO) under Grant Number G.0262.14N.


  1. Ambrozic, L., Gorsic, M., Geeroms, J., Flynn, L., Molino Lova, R., Kamnik, R., et al. (2014). Cyberlegs: A user-oriented robotic transfemoral prosthesis with whole-body awareness control. IEEE Robotics & Automation Magazine, 21(4), 82–93.CrossRefGoogle Scholar
  2. Au, S. K., Herr, H., Weber, J., Martinez-Villalpando, E. C. (2007). Powered ankle-foot prosthesis for the improvement of amputee ambulation. In: 29th Annual international conference of the IEEE engineering in medicine and biology society (EMBS), (pp. 3020–3026). IEEEGoogle Scholar
  3. Au, S. K., & Herr, H. (2008). Powered ankle–foot prosthesis. IEEE Robotics & Automation Magazine, 15(3), 52–59.CrossRefGoogle Scholar
  4. Beckerle, P., Wojtusch, J., Schuy, J., Strah, B., Rinderknecht, S., Stryk, O. (2013). Power-optimized stiffness and nonlinear position control of an actuator with variable torsion stiffness. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM), (pp. 387–392). IEEEGoogle Scholar
  5. Bellman, R. D., Holgate, M. A., Sugar, T. G. (2008). Sparky 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), (pp. 511–516). IEEEGoogle Scholar
  6. Bergelin, B. J., & Voglewede, P. A. (2012). Design of an active ankle–foot prosthesis utilizing a four-bar mechanism. Journal of Mechanical Design, 134(6), 061,004.CrossRefGoogle Scholar
  7. Dillingham, T. R., Pezzin, L. E., & MacKenzie, E. J. (2002). Limb amputation and limb deficiency: Epidemiology and recent trends in the United States. Southern Medical Journal, 95(8), 875–884.Google Scholar
  8. Ephraim, P. L., Dillingham, T. R., Sector, M., Pezzin, L. E., & MacKenzie, E. J. (2003). Epidemiology of limb loss and congenital limb deficiency: A review of the literature. Archives of Physical Medicine and Rehabilitation, 84(5), 747–761.CrossRefGoogle Scholar
  9. Eslamy, M., Grimmer, M., & Seyfarth, A. (2012). Effects of unidirectional parallel springs on required peak power and energy in powered prosthetic ankles: comparison between different active actuation concepts. In: IEEE international conference on robotics and biomimetics (ROBIO), (pp. 2406–2412). IEEEGoogle Scholar
  10. Everarts, C., Dehez, B., Ronsse, R. (2012). Variable stiffness actuator applied to an active ankle prosthesis: Principle, energy-efficiency, and control. In: IEEE/RSJ international conference on intelligent robots and systems, (pp. 323–328). IEEEGoogle Scholar
  11. Flynn, L., Geeroms, J., Jimenez-Fabian, R., Vanderborght, B., Vitiello, N., & Lefeber, D. (2015). Ankle–knee prosthesis with active ankle and energy transfer: Development of the CYBERLEGs alpha-prosthesis. Robotics and Autonomous Systems, 73, 4–15.CrossRefGoogle Scholar
  12. Giovacchini, F., Vannetti, F., Fantozzi, M., Cempini, M., Cortese, M., Parri, A., et al. (2015). A light-weight active orthosis for hip movement assistance. Robotics and Autonomous Systems, 73, 123–134.CrossRefGoogle Scholar
  13. Grimmer, M., & Seyfarth, A. (2011). Stiffness adjustment of a series elastic actuator in an ankle–foot prosthesis for walking and running: The trade-off between energy and peak power optimization. In: 2011 IEEE international conference on robotics and automation (ICRA), (pp. 1439–1444). IEEEGoogle Scholar
  14. Grimmer, M., Eslamy, M., Gliech, S., Seyfarth, A. (2012). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In: IEEE international conference on robotics and automation (ICRA), (pp. 2463–2470). IEEEGoogle Scholar
  15. Herr, H. M., & Grabowski, A. M. (2012). Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation. Proceedings of the Royal Society B: Biological Sciences, 279(1728), 457–464.CrossRefGoogle Scholar
  16. Holgate, M. A., Hitt, J. K., Bellman, R. D., Sugar, T. G., Hollander, K. W. (2008). The sparky (spring ankle with regenerative kinetics) project: Choosing a dc motor based actuation method. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), (pp. 163–168). IEEEGoogle Scholar
  17. Hollander, K. W., Sugar, T. G., Herring, D. E. (2005). Adjustable robotic tendon using a’jack spring’. In: 9th international conference on rehabilitation robotics (ICORR), (pp. 113–118). IEEEGoogle Scholar
  18. Jafari, A., Tsagarakis, N. G., Sardellitti, I., Caldwell, D. G. (2012). How design can affect the energy required to regulate the stiffness in variable stiffness actuators. In: IEEE international conference on robotics and automation (ICRA), (pp. 2792–2797). IEEEGoogle Scholar
  19. Jimenez-Fabian, R., Flynn, L., Geeroms, J., Vitiello, N., Vanderborght, B., & Lefeber, D. (2015). Sliding-bar maccepa for a powered ankle prosthesis. Journal of Mechanisms and Robotics, 7(4), 041,011.CrossRefGoogle Scholar
  20. Malcolm, P., Quesada, R. E., Caputo, J. M., & Collins, S. H. (2015). The influence of push-off timing in a robotic ankle–foot prosthesis on the energetics and mechanics of walking. Journal of Neuroengineering and Rehabilitation, 12(1), 1.CrossRefGoogle Scholar
  21. Paluska, D., & Herr, H. (2006). The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design. Robotics and Autonomous Systems, 54(8), 667–673. Morphology, Control and Passive Dynamics.CrossRefGoogle Scholar
  22. Realmuto, J., Klute, G., & Devasia, S. (2015). Nonlinear passive cam-based springs for powered ankle prostheses. Journal of Medical Devices, 9(1), 011,007.CrossRefGoogle Scholar
  23. Rouse, E. J., Mooney, L. M., Martinez-Villalpando, E. C., Herr, H.M. (2013). Clutchable series-elastic actuator: Design of a robotic knee prosthesis for minimum energy consumption. In: IEEE international conference on rehabilitation robotics (ICORR), (pp. 1–6). IEEEGoogle Scholar
  24. Sup, F., Bohara, A., & Goldfarb, M. (2008). Design and control of a powered transfemoral prosthesis. The International Journal of Robotics Research, 27(2), 263–273.CrossRefGoogle Scholar
  25. Tropea, P., Vitiello, N., Martelli, D., Aprigliano, F., Micera, S., Monaco, V. (2014). Detecting slipping-like perturbations by using adaptive oscillators. Annals of Biomedical Engineering, 43, 416–426.Google Scholar
  26. Van Ham, R., Vanderborght, B., van Damme, M., Verrelst, B., & Lefeber, D. (2007). MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robotics and Autonomous Systems, 55(10), 761–768.CrossRefGoogle Scholar
  27. Vanderborght, B., Van Ham, R., Lefeber, D., Sugar, T. G., & Hollander, K. W. (2009). Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. The International Journal of Robotics Research, 28(1), 90–103.CrossRefGoogle Scholar
  28. Velasco A, Gasparri GM, Garabini M, Malagia L, Salaris P, Bicchi A (2013) Soft-actuators in cyclic motion: Analytical optimization of stiffness and pre-load. In: IEEE-RAS international conference on humanoid robots. Atlanta, Georgia, USAGoogle Scholar
  29. Verstraten, T., Beckerle, P., Furnmont, R., Mathijssen, G., Vanderborght, B., & Lefeber, D. (2016). Series and parallel elastic actuation: Impact of natural dynamics on power and energy consumption. Mechanism and Machine Theory, 102, 232–246.CrossRefGoogle Scholar
  30. Verstraten, T., Mathijssen, G., Furnémont, R., Vanderborght, B., & Lefeber, D. (2015). Modeling and design of geared dc motors for energy efficiency: Comparison between theory and experiments. Mechatronics, 30, 198–213.CrossRefGoogle Scholar
  31. Winter, D. A. (2005). Biomechanics and motor control of human movement. United States of America: John Wiley and Sons.Google Scholar
  32. Zhu, J., Wang, Q., & Wang, L. (2014). On the design of a powered transtibial prosthesis with stiffness adaptable ankle and toe joints. IEEE Transactions on Industrial Electronics, 61(9), 4797–4807.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Robotics Research Group and Flanders MakeVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations