Autonomous Robots

, Volume 42, Issue 2, pp 291–306 | Cite as

Receding horizon path planning for 3D exploration and surface inspection

  • Andreas BircherEmail author
  • Mina Kamel
  • Kostas Alexis
  • Helen Oleynikova
  • Roland Siegwart
Part of the following topical collections:
  1. Active Perception


Within this paper a new path planning algorithm for autonomous robotic exploration and inspection is presented. The proposed method plans online in a receding horizon fashion by sampling possible future configurations in a geometric random tree. The choice of the objective function enables the planning for either the exploration of unknown volume or inspection of a given surface manifold in both known and unknown volume. Application to rotorcraft Micro Aerial Vehicles is presented, although planning for other types of robotic platforms is possible, even in the absence of a boundary value solver and subject to nonholonomic constraints. Furthermore, the method allows the integration of a wide variety of sensor models. The presented analysis of computational complexity and thorough simulations-based evaluation indicate good scaling properties with respect to the scenario complexity. Feasibility and practical applicability are demonstrated in real-life experimental test cases with full on-board computation.


Exploration planning Next-best-view Autonomous inspection Aerial robotics 



This work has received funding from (a) the European Union’s Horizon 2020 Research and Innovation Programme under the Grant Agreement No. 644128, AEROWORKS, (b) from the VPRI supporting account of UNR.


  1. Acar, E. U., Choset, H., Rizzi, A. A., Atkar, P. N., & Hull, D. (2002). Morse decompositions for coverage tasks. The International Journal of Robotics Research, 21(4), 331–344.CrossRefGoogle Scholar
  2. Adler, B., Xiao, J., & Zhang, J. (2014). Autonomous exploration of urban environments using unmanned aerial vehicles. Journal of Field Robotics, 31(6), 912–939.CrossRefGoogle Scholar
  3. Alexis, K., Papachristos, C., Siegwart, R., & Tzes, A. (2015). Uniform coverage structural inspection path-planning for micro aerial vehicles. In IEEE international symposium on intelligent control (ISIC) (pp. 59–64). IEEE.Google Scholar
  4. Alexis, K., Nikolakopoulos, G., & Tzes, A. (2012). Model predictive quadrotor control: attitude, altitude and position experimental studies. Control Theory & Applications, IET, 6(12), 1812–1827.MathSciNetCrossRefGoogle Scholar
  5. Amigoni, F., Li, A. Q., & Holz, D. (2013) Evaluating the impact of perception and decision timing on autonomous robotic exploration. In 2013 european conference on mobile robots (ECMR) (pp. 68–73). IEEE.Google Scholar
  6. Banta, J. E., Wong, L. M., Dumont, C., Abidi, M., et al. (2000). A next-best-view system for autonomous 3-d object reconstruction. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 30(5), 589–598.CrossRefGoogle Scholar
  7. Basilico, N., & Amigoni, F. (2011). Exploration strategies based on multi-criteria decision making for searching environments in rescue operations. Autonomous Robots, 31(4), 401–417.CrossRefGoogle Scholar
  8. Bircher, A., Alexis, K. (2016). Receding Horizon Next Best View Planner Code Release.
  9. Bircher, A., Alexis, K., Schwesinger, U., Omari, S., Burri, M., & Siegwart, R. (2016). An incremental sampling-based approach to inspection planning: the rapidly exploring random tree of trees. Robotica (pp. 1–14).Google Scholar
  10. Bircher, A., Kamel, M., Alexis, K., & Siegwart, R. (2016). Next Best View Planning Dataset Release.
  11. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., & Siegwart, R. (2016). Receding horizon “next-best-view” planner for 3D exploration. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 1462–1468). IEEE.Google Scholar
  12. Bircher, A., Kamel, M., Alexis, K., Burri, M., Oettershagen, P., Omari, S., et al. (2016). Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots. Autonomous Robots, 40(6), 1059–1078.CrossRefGoogle Scholar
  13. Bloesch, M., Omari, S., Hutter, M., & Siegwart, R. (2015). Robust visual inertial odometry using a direct ekf-based approach. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 298–304). IEEE.Google Scholar
  14. Burgard, W., Moors, M., Fox, D., Simmons, R., & Thrun, S. (2000) Collaborative multi-robot exploration. In Proceedings of the IEEE international conference on robotics and automation (ICRA’00) (Vol. 1, pp. 476–481). IEEE.Google Scholar
  15. Burri, M., Nikolic, J., Hurzeler, C., Caprari, G., & Siegwart, R. (2012). Aerial service robots for visual inspection of thermal power plant boiler systems. In 2012 2nd international conference on applied robotics for the power industry (CARPI) (pp. 70–75).Google Scholar
  16. Camacho, E. F., & Bordons, C. (2003). Model Predictive Control. Berlin: Springer.zbMATHGoogle Scholar
  17. Chin, R. T., & Harlow, C. A. (1982). Automated visual inspection: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 557–573.CrossRefGoogle Scholar
  18. Choset, H., Pignon, P. (1998). Coverage path planning: The boustrophedon cellular decomposition. In Field and service robotics (pp. 203–209). SpringerGoogle Scholar
  19. Colas, F., Mahesh, S., Pomerleau, F., Liu, M., & Siegwart, R.(2013). 3d path planning and execution for search and rescue ground robots. In 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 722–727). IEEE.Google Scholar
  20. Connolly, C., et al. (1985). The determination of next best views. In Proceedings of the 1985 IEEE international conference on robotics and automation, (Vol. 2, pp. 432–435). IEEE.Google Scholar
  21. Dewan, A., Mahendran, A., Soni, N., & Krishna, M.(2013). Heterogeneous UGV-MAV exploration using integer programming. In 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5742–5749). IEEE.Google Scholar
  22. Dornhege, C., & Kleiner, A. (2013). A frontier-void-based approach for autonomous exploration in 3d. Advanced Robotics, 27(6), 459–468.CrossRefGoogle Scholar
  23. Faigl, J., & Kulich, M.(2015) On benchmarking of frontier-based multi-robot exploration strategies. In 2015 european conference on mobile robots (ECMR) (pp. 1–8). IEEE.Google Scholar
  24. Faigl, J., Kulic, M., & Přeučil, L. (2012). Goal assignment using distance cost in multi-robot exploration. In 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3741–3746). IEEE.Google Scholar
  25. Galceran, E., & Carreras, M. (2013). A survey on coverage path planning for robotics. Robotics and Autonomous Systems, 61(12), 1258–1276.CrossRefGoogle Scholar
  26. González-Banos, H. H., & Latombe, J.-C. (2002). Navigation strategies for exploring indoor environments. The International Journal of Robotics Research, 21(10–11), 829–848.CrossRefGoogle Scholar
  27. Heng, L., Gotovos, A., Krause, A., & Pollefeys, M. (2015). Efficient visual exploration and coverage with a micro aerial vehicle in unknown environments. In IEEE international conference on robotics and automation (ICRA).Google Scholar
  28. Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). Octomap: An efficient probabilistic 3d mapping framework based on octrees. Autonomous Robots, 34(3), 189–206.CrossRefGoogle Scholar
  29. Hover, F. S., Eustice, R. M., Kim, A., Englot, B., Johannsson, H., Kaess, M., & Leonard, J. J.(2012). Advanced perception, navigation and planning for autonomous in-water ship hull inspection. The International Journal of Robotics Research, 31(12), 1445–1464.Google Scholar
  30. Howard, A., Parker, L. E., & Sukhatme, G. S. (2006). Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection. The International Journal of Robotics Research, 25(5–6), 431–447.CrossRefGoogle Scholar
  31. Janoušek, P., & Faigl, J. (2013). Speeding up coverage queries in 3D multi-goal path planning. In 2013 IEEE international conference on robotics and automation (ICRA) (Vol. 1. IEEE, pp. 5082–5087).Google Scholar
  32. Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894.CrossRefzbMATHGoogle Scholar
  33. Khanna, R., Moller, M., Pfeifer, J., Liebisch, F., Walter, A., & Siegwart, R. (2015). Beyond point clouds-3d mapping and field parameter measurements using uavs. In 2015 IEEE 20th conference on emerging technologies & factory automation (ETFA) (pp. 1–4). IEEE.Google Scholar
  34. Kuipers, B., & Byun, Y.-T. (1991). A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robotics and Autonomous Systems, 8(1), 47–63.CrossRefGoogle Scholar
  35. LaValle, S. M.(1998) Rapidly-exploring random trees a new tool for path planning.Google Scholar
  36. Li, A. Q., Amigoni, F., & Basilico, N. (2012). Searching for optimal off-line exploration paths in grid environments for a robot with limited visibility. AAAI.Google Scholar
  37. Lynen, S., Achtelik, M. W., Weiss, S., Chli, M., & Siegwart, R. (2013). A robust and modular multi-sensor fusion approach applied to mav navigation. In 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3923–3929). IEEE.Google Scholar
  38. Nikolic, J., Burri, M., Rehder, J., Leutenegger, S., Huerzeler, C., & Siegwart, R. (2013). A UAV system for inspection of industrial facilities. In IEEE aerospace conference.Google Scholar
  39. Omari, S., Gohl, P., Burri, M., Achtelik, M., & Siegwart, R. (2014). Visual industrial inspection using aerial robots. In 2014 3rd international conference on applied robotics for the power industry (CARPI) (pp. 1–5). IEEE.Google Scholar
  40. Papadopoulos, G., Kurniawati, H., Patrikalakis, N. M.(2013). Asymptotically optimal inspection planning using systems with differential constraints. In 2013 IEEE international conference on robotics and automation (ICRA) (pp. 4126–4133). IEEE.Google Scholar
  41. Pito, R. (1999). A solution to the next best view problem for automated surface acquisition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(10), 1016–1030.CrossRefGoogle Scholar
  42. Rosenblatt, J., Williams, S., & Durrant-Whyte, H. (2002). A behavior-based architecture for autonomous underwater exploration. Information Sciences, 145(1), 69–87.CrossRefzbMATHGoogle Scholar
  43. Surmann, H., Nüchter, A., & Hertzberg, J. (2003). An autonomous mobile robot with a 3d laser range finder for 3d exploration and digitalization of indoor environments. Robotics and Autonomous Systems, 45(3), 181–198.CrossRefGoogle Scholar
  44. Vasquez-Gomez, J. I., Sucar, L. E., Murrieta-Cid, R., & Lopez-Damian, E. (2014). Volumetric next best view planning for 3d object reconstruction with positioning error. International Journal of Advanced Robotic Systems, 11, 159.CrossRefGoogle Scholar
  45. Whaite, P., & Ferrie, F. P. (1997). Autonomous exploration: Driven by uncertainty. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(3), 193–205.CrossRefGoogle Scholar
  46. Yamauchi, B.(1997). A frontier-based approach for autonomous exploration. In Proceedings of the 1997 IEEE international symposium on computational intelligence in robotics and automation (CIRA’97) (pp. 146–151). IEEE.Google Scholar
  47. Yoder, L., & Scherer, S. (2016). Autonomous exploration for infrastructure modeling with a micro aerial vehicle. In Field and service robotics (pp. 427–440). Springer.Google Scholar
  48. Zlot, R., & Bosse, M. (2014). Efficient large-scale three-dimensional mobile mapping for underground mines. Journal of Field Robotics, 31(5), 758–779.CrossRefGoogle Scholar
  49. Zlot, R., & Stentz, A. (2006). Market-based multirobot coordination for complex tasks. The International Journal of Robotics Research, 25(1), 73–101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.ETH ZurichZurichSwitzerland
  2. 2.University of Nevada, RenoRenoUSA

Personalised recommendations