Autonomous Robots

, Volume 41, Issue 1, pp 259–272 | Cite as

High-slope terrain locomotion for torque-controlled quadruped robots

  • Michele FocchiEmail author
  • Andrea del Prete
  • Ioannis Havoutis
  • Roy Featherstone
  • Darwin G. Caldwell
  • Claudio Semini


Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope (\(50^\circ \)) V-shaped walls; an achievement that to the authors’ best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain.


Whole-body control Multi-contact inter-action Quadruped locomotion Ground Reaction Force optimization Force control 



This research has been funded by the Fondazione Istituto Italiano di Tecnologia.


  1. Armstrong, B. (1989). On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics. The International Journal of Robotics Research, 8(6), 28–48. doi: 10.1177/027836498900800603.
  2. Bloesch, M., Hutter, M., Hoepflinger, M., Leutenegger, S., Gehring, C., Remy, C. D., & Siegwart, R. (2012). State estimation for legged robots-consistent fusion of leg kinematics and IMU. Robotics: Science and Systems.
  3. Boaventura, T., Semini, C., Buchli, J., Frigerio, M., Focchi, M., & Caldwell, D. G., (2012). Dynamic torque control of a hydraulic quadruped robot. In 2012 IEEE international conference on robotics and automation (pp. 1889–1894). doi: 10.1109/ICRA.2012.6224628,
  4. Bretl, T., & Lall, S. (2008). Testing static equilibrium for legged robots. IEEE Transactions on Robotics, 24(4), 794–807. doi: 10.1109/TRO.2008.2001360.CrossRefGoogle Scholar
  5. Buchli, J., Kalakrishnan, M., Pastor, P., & Schaal, S., (2009). Compliant quadruped locomotion over rough terrain. In IEEE/RSJ international conference on intelligent robots and systems 2009 IROS 2009.
  6. Cheng, G., Hyon, S. H., Ude, A., Morimoto, J., Hale, J. G., Hart, J., Nakanishi, J., Bentivegna, D., Hodgins, J., Atkeson, C., Mistry, M., Schaal. S., et al. (2008). CB: Exploring neuroscience with a humanoid research platform. In 2008 IEEE international conference on robotics and automation (pp. 1772–1773). doi: 10.1109/ROBOT.2008.4543459,
  7. de Lasa, M., Mordatch, I., Hertzmann, A., et al. (2010). Feature-based locomotion controllers. ACM Transactions on Graphics, 29(4), 1. doi: 10.1145/1833351.1781157,
  8. Feng, S., Xinjilefu, X., Atkeson, C. G., & Kim, J. (2015). Optimization based controller design and implementation for the Atlas robot in the DARPA robotics challenge finals. In 2015 IEEE-RAS international conference on humanoid robots.Google Scholar
  9. Ferreau, H. J., Kirches, C., & Potschka, A. (2013). qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation. doi: 10.1007/s12532-014-0071-1.
  10. Frigerio, M., Buchli, J., Caldwell, D. G., et al. (2012). Code generation of algebraic quantities for robot controllers. 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 2346–2351). doi: 10.1109/IROS.2012.6385694,
  11. Gautier, M. (1991). Numerical calculation of the base inertial parameters of robots. Journal of Robotic Systems, 8(4), 1020–1025, doi: 10.1109/ROBOT.1990.126126,
  12. Gehring, C., Coros, S., Hutter, M., Bloesch, M., Hoepflinger, M., & Siegwart, R. (2013). Control of dynamic gaits for a quadrupedal robot. In IEEE international conference on robotics and automation (ICRA).
  13. Gertz, E., & Wright, S. (2001). OOQP user guide. Mathematics and Computer Science Division Technical Memorandum.
  14. Guennebaud, G., Furfaro, A., & Gaspero, L. D. (2011). eiquadprog.hh.
  15. Hutter, M., Hoepflinger, M., & Gehring, C. (2012). Hybrid operational space control for compliant legged systems. In Proceedings of robotics: Science and systems, 2012.
  16. Hyon, S., Hale, J., Cheng, G., et al. (2007). Full-body compliant humanhumanoid interaction: Balancing in the presence of unknown external forces. IEEE transactions on robotics, 23(5), 884–898.
  17. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned from the DARPA robotics challenge trials. International Journal of Field Robotics, 32, 192–208.CrossRefGoogle Scholar
  18. Jovic, J., Philipp, F., Escande, A., Ayusawa, K., Yoshida, E., Kheddar, A., Venture, G., et al. (2015). Identification of dynamics of humanoids : Systematic exciting motion generation. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2173–2179). doi: 10.1109/IROS.2015.7353668.
  19. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Resolved momentum control : humanoid motion planning based on the linear and angular momentum National Institute of Advanced Industrial Science and Technology (AIST). In 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS), October (pp. 1644–1650).Google Scholar
  20. Kuindersma, S., Deits, R., Andr, M. F., Dai, H., Permenter, F., Pat, K., & Russ, M. (2016). Optimization-based locomotion planning, estimation, and control design for Atlas. Autonomous Robots40(3), 429–455.Google Scholar
  21. Lee, S., & Goswami, A. (2010). Ground reaction force control at each foot: A momentum-based humanoid balance controller for non-level and non-stationary ground. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010 (pp. 3157–3162). doi: 10.1109/IROS.2010.5650416,
  22. Lee, S. H., & Goswami, A. (2012). A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Autonomous Robots, 33(4), 399–414. doi: 10.1007/s10514-012-9294-z.
  23. Lin, P. C., Komsuoglu, H., Koditschek, D., et al. (2005) A leg configuration measurement system for full-body pose estimates in a hexapod robot. IEEE Transactions on Robotics, 21(3), 411–422.
  24. Macchietto, A., & Shelton, C. R. (2009). Momentum control for balance. In ACM Transactions on graphics (TOG).Google Scholar
  25. Mistry, M., Schaal, S., Yamane, K., et al. (2009). Inertial parameter estimation of floating base humanoid systems using partial force sensing. In IEEE international conference on humanoids 2009.
  26. Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., & Inoue, H. (2002). Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP. IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2684–2689). doi: 10.1109/IRDS.2002.1041675.
  27. Orin, D. E., Goswami, A., Lee, S. H., et al. (2013). Centroidal dynamics of a humanoid robot. Autonomous Robots35(2–3), 161–176. doi: 10.1007/s10514-013-9341-4.
  28. Ott, C., Roa, M. A., Hirzinger, G., et al. (2011). Posture and balance control for biped robots based on contact force optimization. In 2011 11th IEEE-RAS international conference on humanoid robots (pp. 26–33). doi: 10.1109/Humanoids.2011.6100882,
  29. Pratt, J., Chew, C., Torres, A., Dilworth, P., Pratt, G., et al. (2001). Virtual model control: An intuitive approach for bipedal locomotion. The International Journal of Robotics Research20, 129–143. doi: 10.1177/02783640122067309,
  30. Righetti, L., Buchli, J., Mistry, M., Schaal, S., et al. (2011). Inverse dynamics control of floating-base robots with external constraints: A unified view. In 2011 IEEE international conference on robotics and automation (pp. 1085–1090). doi: 10.1109/ICRA.2011.5980156,
  31. Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S., et al. (2013). Optimal distribution of contact forces with inverse dynamics control. The International Journal of Robotics Research. doi: 10.1177/0278364912469821.
  32. Schaal, S., (2001). The S L Simulation and Real-Time Control Software Package.Google Scholar
  33. Schumacher, P. M., Zanderigo, E., & Morari, M. (2009). Short Papers, 6(2), 256–264. doi: 10.1109/TCBB.2006.4,0504378.Google Scholar
  34. Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D. G., et al. (2011). Design of HyQ—A hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering225(6), 831–849. doi: 10.1177/0959651811402275.
  35. Stephens, B. J., & Atkeson, C. G., (2010). Dynamic balance force control for compliant humanoid robots. 2010 IEEE/RSJ international conference on intelligent robots and systems (pp. 1248–1255). doi: 10.1109/IROS.2010.5648837,

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Michele Focchi
    • 1
    Email author
  • Andrea del Prete
    • 2
  • Ioannis Havoutis
    • 3
  • Roy Featherstone
    • 1
  • Darwin G. Caldwell
    • 1
  • Claudio Semini
    • 1
  1. 1.Department of Advanced RoboticsIstituto Italiano di TecnologiaGenoaItaly
  2. 2.LAAS-CNRSToulouseFrance
  3. 3.Robot Learning & Interaction GroupIdiap Research InstituteMartignySwitzerland

Personalised recommendations