Aghasadeghi, N., Zhao, H., Hargrove, L. J., Ames, A. D., Perreault, E. J., & Bretl, T.(2013). Learning impedance controller parametersfor lower-limb prostheses. IEEE/RSJ international conference on intelligent robots and systems (pp. 4268–4274).
Ames, A., Galloway, K., & Grizzle, J. (2012). Control lyapunovfunctions and hybrid zero dynamics. In IEEE 51st annual conference on decision and control (CDC) (pp. 6837–6842).
Ames, A., Vasudevan, R., & Bajcsy, R. (2011). Human-data based costof bipedal robotic walking. In Hybrid systems: Computation and control (pp. 153–162). Chicago, IL.
Ames, A. (2012). Human-inspired control of bipedal walking robots. IEEE Transactions on Automatic Control, 59, 1115–1130.
MathSciNet
Article
Google Scholar
Ames, A. (2012). First steps toward automatically generating bipedal robotic walking from human data. Robotic Motion and Control, 422, 89–116.
MathSciNet
Google Scholar
Ames, A. D., Galloway, K., Grizzle, J., & Sreenath, K. (2014). Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics. IEEE Transactions on Automatic Control, 59, 876–891.
MathSciNet
Article
Google Scholar
Atherton, D., & Majhi, S. (1999). Limitations of pid controllers. In American control conference (pp 3843–3847).
Au, S., Berniker, M., & Herr, H. (2008). Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Networks, 21(4), 654–666.
Article
Google Scholar
Blaya, J. A., & Herr, H. (2004). Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 24–31.
Article
Google Scholar
Boehler, A., Hollander, K., Sugar, T., & Shin, D. (2008). Design, implementation and test results of a robust control method for apowered ankle foot orthosis (afo). In IEEE International conference on robotics and automation (pp. 2025–2030).
Dillingham, T. (2002). Limb amputation and limb deficiency: Epidemiology and recent trends in the united states. Southern Medical Journal, 95, 875–884.
Google Scholar
Fey, N., Simon, A., Young, A., & Hargrove, L. (2014). Controlling knee swing initiation and ankle plantarflexion with an active prosthesis on level and inclined surfaces at variable walking speeds. IEEE Journal of Translational Engineering in Health and Medicine, 2, 1–12.
Article
Google Scholar
Flowers, W., & Mann, (1977). Electrohydraulic knee-torque controller for a prosthesis simulator. ASME Journal of Biomechanical Engineering, 99(4), 3–8.
Article
Google Scholar
Gregg, R., Lenzi, T., Hargrove, L., & Sensinger, J. (2014). Virtual constraint control of a powered prosthetic leg: From simulation to experiments with transfemoral amputees. IEEE Transactions on Robotics, 30(6), 1455–1471.
Article
Google Scholar
Grimes, D., Flowers, W., & Donath, M. (1977). Feasibility of an active control scheme for above knee prostheses. ASME Journal of Biomechanical Engineering, 99(4), 215–221.
Article
Google Scholar
Herr, J. W. H., & Au, S. (2007). In Powered ankle-foot prosthesis. Biomechanics of the Lower limb in health, disease and rehabilitation (pp. 72–74).
Hitt, J., Oymagil, A. M., Sugar, T., Hollander, K., Boehler, A., & Fleeger, J. (2007). Dynamically controlled ankle-foot orthosis (dco) with regenerative kinetics: Incrementally attaining userportability. In IEEE international conference on robotics and automation (pp. 1541–1546).
Hogan, N. (1984). Impedance control: An approach to manipulation (pp. 304–313).
Hollander, K., & Sugar, T. (2007). A robust control concept forrobotic ankle gait assistance. In 2007 IEEE 10th international conference on rehabilitation robotics (pp. 119–123).
Hürmüzlü, Y., & Marghitu, D. (1994). Rigid body collisions of planar kinematic chains with multiple contact points. International Journal of Robotics Research, 13(1), 82–92.
Article
Google Scholar
Jiang, S., Partrick, S., Zhao, H., & Ames, A. (2012). Outputs of human walking for bipedal robotic controller design. American Control Conference (ACC), 2012, 4843–4848.
Google Scholar
Luinge, H. J., & Veltink, P. H. (2005). Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Medical and Biological Engineering and Computing, 43(2), 273–282.
Article
Google Scholar
Ma, W.-L., Zhao, H., Kolathaya, S., & Ames, A. D.(2014). Human-inspired walking via unified pd and impedance control. In IEEE international conference on robotic and automation (pp. 5088–5094).
Miller, N., Jenkins, O. C., Kallmann, M., & Mataric, M. J. (2004) .Motion capture from inertial sensing for untethered humanoidteleoperation. In IEEE/RAS 4th International conference on humanoid robots (vol. 2, pp. 547–565).
Morris, B., Powell, M., & Ames, A. (2013). Sufficient conditionsfor the lipschitz continuity of qp-based multi-objective control ofhumanoid robots. In IEEE 52nd Annual conference on decision and control (CDC) (pp 2920–2926).
Oymagil, A. M., Hitt, J. K., Sugar, T., & Fleeger, J. (2007). Controlof a regenerative braking powered ankle foot orthosis. In IEEE 10th international conference on rehabilitation robotics (pp. 28–34).
Rarick, R., Richter, H., van den Bogert, A., Simon, D., Warner, H., & Barto, T.(2014). Optimal design of a transfemoral prosthesiswith energy storage and regeneration. In American control conference (pp 4108–4113).
Roetenberg, D., Luinge, H., & Slycke, P. (2009). Xsens mvn: full 6dof human motion tracking using miniature inertial sensors. Xsens Motion Technologies BV, Technical Report.
Sastry, S. (1999). Nonlinear systems: Analysis stability and control. New York: Springer.
Book
MATH
Google Scholar
Šlajpah, S., Kamnik, R., & Munih, M. (2013). Kinematics based sensory fusion for wearable motion assessment in human walking. Computer Methods and Pograms in Biomedicine, 116, 131–144.
Article
Google Scholar
Sup, F., Bohara, A., & Goldfarb, M. (2008). Design and control of a powered transfemoral prosthesis. The International Journal of Robotics Research, 27(2), 263–273.
Article
Google Scholar
Westervelt, E., Grizzle, J., Chevallereau, C., Choi, J., & Morris, B. (2007). Feedback control of dynamic bipedal robot locomotion. Boca Raton: CRC Press.
Book
Google Scholar
Winter, D. (1990). Biomechanics and motor control of human movement (2nd ed.). New York: Wiley-Interscience.
Google Scholar
Winter, D. (1991). The biomechanics and motor control of humangait: Normal, elderly, and pathological. Waterloo: University of Waterloo Press.
Google Scholar
Yadukumar, S. N., Pasupuleti, M., & Ames, A. (2012). Human-inspiredunderactuated bipedal robotic walking with AMBER on flat-ground,up-slope and uneven terrain. In IEEE international conference on intelligent robots and systems (pp. 2478–83). Portugal.
Zhao, H., & Ames, A. D. (2014). Quadratic program based control offully-actuated transfemoral prosthesis for flat-ground and up-slopelocomotion. IEEE, American control conference (pp. 4101–4107).
Zhao, H., Kolathaya, S., & Ames, A. D.(2014). Quadraticprogramming and impedance control for transfemoral prosthesis. IEEE international conference on robotic and automation (pp. 1341–1347).
Zhao, H., Ma, W.-L., Zeagler, M. B., & Ames, A. D.(2014). Human-inspired multi-contact locomotion with AMBER2. In IEEE International conference on cyberphysics system (pp 199–210).
Zhao, H., Powell, M., & Ames, A. D. (2013). Human-inspired motion primitives and transitions for bipedal robotic locomotion in diverse terrain. Optimal Control Applications and Methods, 35, 730–755.
Article
MATH
Google Scholar